CURRICULUM

OF

AGRONOMY

MS & PhD

(Revised 2018)

HIGHER EDUCATION COMMISSION
ISLAMABAD
CURRICULUM DIVISION, HEC

Prof. Dr. Mukhtar Ahmed Chairman
Prof. Dr. Arshad Ali Executive Director
Mr. Muhammad Raza Chohan Director General (Academics)
Dr. Muhammad Idrees Director (Curriculum)
Mr. Hidayatullah Kasi Deputy Director (Curriculum)
Mr. Rabeel Bhatti Assistant Director (Curriculum)
<table>
<thead>
<tr>
<th></th>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Scheme of Studies for MS/MSc (Hons.)/PhD</td>
</tr>
<tr>
<td>3</td>
<td>Detail of course for MS/BSc (Hons.)/PhD</td>
</tr>
<tr>
<td>4</td>
<td>List of recommended books for Agronomy</td>
</tr>
</tbody>
</table>

PREFACE

The curriculum, with varying definitions, is said to be a plan of the teaching-learning process that students of an academic programme are required to undergo to achieve some specific objectives. It includes scheme of studies, objectives & learning outcomes, course contents, teaching methodologies and assessment/evaluation. Since knowledge in all disciplines and fields is expanding at a fast pace and new disciplines are also emerging; it is imperative that curricula be developed and revised accordingly.
University Grants Commission (UGC) was designated as the competent authority to develop, review and revise curricula beyond Class-XII vide Section 3, Sub-Section 2 (ii), Act of Parliament No. X of 1976 titled “Supervision of Curricula and Textbooks and Maintenance of Standard of Education”. With the repeal of UGC Act, the same function was assigned to the Higher Education Commission (HEC) under its Ordinance of 2002, Section 10, Sub-Section 1 (v).

In compliance with the above provisions, the Curriculum Division of HEC undertakes the revision of curricula regularly through respective National Curriculum Revision Committees (NCRCs) which consist of eminent professors and researchers of relevant fields from public and private sector universities, R&D organizations, councils, industry and civil society by seeking nominations from their organizations.

In order to impart quality education which is at par with indigenous needs and international standards, HEC NCRCs have developed unified framework/templates as guidelines for the development and revision of curricula in the disciplines of Basic Sciences, Applied Sciences, Social Sciences, Agriculture and Engineering.

It is hoped that this curriculum document, prepared by the respective NCRC’s, would serve the purpose of meeting our national, social and economic needs, and it would also provide the level of competency specified in Pakistan Qualification Framework to make it compatible with international educational standards. The curriculum is also placed on the website of HEC

http://hec.gov.pk/english/services/universities/RevisedCurricula/Pages/default.aspx

(Muhammad Raza Chohan)
Director General (Academics)
CURRICULUM DEVELOPMENT PROCESS

Abbreviations Used:
CRC. Curriculum Revision Committee
VCC. Vice Chancellor’s Committee
EXP. Experts
COL. Colleges
UNI. Universities
PREP. Preparation
REC. Recommendations

STAGE-I
CURRI. UNDER CONSIDERATION
COLLECTION OF REC
CONS. OF CRC.
PREP. OF DRAFT BY CRC
ORIENTATION COURSES

STAGE-II
CURRI. IN DRAFT STAGE
APPRASIAL OF 1ST DRAFT BY EXP. OF COL./UNIV
FINALIZATION OF DRAFT BY CRC
APPROVAL OF CURRI. BY V.C.C.

STAGE-III
FINAL STAGE
PREP. OF FINAL CURRI.
INCORPORATION OF REC. OF V.C.C.
PRINTING OF CURRI.

STAGE-IV
FOLLOW UP STUDY
QUESTIONNAIRE
COMMENTS
REVIEW
IMPLE. OF CURRI.
BACK TO STAGE-I
CURRICULUM DEVELOPMENT CYCLE

1. Nominations from all Stakeholders
2. Selection of Relevant Members
3. Formulation of NCRC
4. Preliminary Meeting/Preparation of Draft
5. Circulation of Draft for feedback (Local/Foreign)
6. Convening of Final NCRC
7. Composing/Printing
8. Dissemination (Website/Hard copies)
RATIONALE OF DEGREE PROGRAMME IN AGRONOMY

Achieving sustainability in food grain production and food security, in its totality, continues to be a challenge in the developing world including Pakistan. The produce of green revolution, we are harvesting now, seems to be saturated in terms of genetic potential. Over the past two decades, global food production has trebled, largely because of advances in agronomy.

The major challenges to sustainable food grain production in Pakistan include availability of quality seed, declining soil health, fragile cropping systems, looming water crisis, environmental degradation owing to indiscriminate use of farm chemicals, post harvest losses, minimal value addition and product differentiation, inadequate food storage and preservation, and poor marketing system. The imperative need, therefore, is to address these issues more forcefully in order to tap the considerable productivity potential of the agriculture sector through resource conservation.

The objective of the education and training in Agronomy is to generate, integrate, and apply knowledge about crop plants that are grown for food, feed, fiber and the general benefit of people. Education and training programs in agronomy (at undergraduate, post graduate and PhD level) aim at developing trained human resource base who conduct basic and applied research in various aspects of crop production and soil management under varying agro-ecological and socio-economic conditions of the farming community. The graduates majoring in agronomy help find and disseminate answers to problems, and discover opportunities concerning efficiency and sustainability of production systems by developing safe and environmentally-sound practices. Manpower so trained serves in different capacity providing advisory services to farmers, NGOs and the relevant agro-based industry, impart short term training to farmers and in-service agri-personnel pertaining to latest developments in this field for better resource management and sustaining crop yields under changing environmental scenario.
Minutes of National Curriculum Revision Committee (NCRC)
Final Meeting of Agronomy held from March 05-07, 2018 at HEC Regional Centre, Lahore

The final meeting of National Curriculum Revision Committee (NCRC) in the discipline of Agronomy for Bachelor, Master and Ph.D Degree programmes was held from March 05-07, 2018 (03 days) at HEC, Regional Center, Lahore. The purpose of the meeting was to finalize the draft curriculum prepared in its preliminary meeting held from 09-11 October, 2017 (03 days) at HEC, Regional Center, Lahore. Experts from academia, research and development organizations participated in the meeting. Mr. Rabeel Bhatti (Assistant Director, Curriculum, HEC, Pakistan) coordinated the NCRC meeting. The list of the participants is as below:

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Position</th>
<th>Department</th>
<th>University/Other Details</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dr. Bashir Ahmad</td>
<td>Professor</td>
<td>Department of Agronomy</td>
<td>University of Agriculture, Peshawar</td>
<td>Convener</td>
</tr>
<tr>
<td>2.</td>
<td>Dr. Aijaz Ahmad Soomro</td>
<td>Chairman / Professor</td>
<td>Department of Agronomy</td>
<td>Sindh Agriculture University, Tandojam</td>
<td>Secretary</td>
</tr>
<tr>
<td>3.</td>
<td>Dr. Muhammad Rashid</td>
<td>Associate Professor</td>
<td>Department of Agronomy</td>
<td>Lasbela University of Agriculture, Water & Marine Sciences, Uthal, Balochistan</td>
<td>Co-Secretary</td>
</tr>
<tr>
<td>4.</td>
<td>Dr. Nazim Hussain</td>
<td>Chairman / Professor</td>
<td>Department of Agronomy</td>
<td>Bahauddin Zakariya University, Multan</td>
<td>Member</td>
</tr>
<tr>
<td>5.</td>
<td>Dr. Qamaruddin Chachar</td>
<td>Chairman / Professor</td>
<td>Department of Crop Physiology</td>
<td>Sindh Agriculture University, Tandojam</td>
<td>Member</td>
</tr>
<tr>
<td>6.</td>
<td>Dr. Riaz Ahmad</td>
<td>Chairman / Professor</td>
<td>Department of Agronomy</td>
<td>University of Agriculture, Faisalabad</td>
<td>Member</td>
</tr>
<tr>
<td>7.</td>
<td>Dr. Muzammil Hussain Siddiqui</td>
<td>Professor/Chairman</td>
<td>Department of Agronomy</td>
<td>Faculty of Agriculture, The University of Poonch, Rawalakot, AJK</td>
<td>Member</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Position</td>
<td>Institute/University</td>
<td>Member</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Dr. Muhammad Naeem Shahwani</td>
<td>Professor</td>
<td>Faculty of Life Sciences & Informatics, Department of Biotechnology, BUITEMS, Quetta.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Dr. Ghulam Qadir</td>
<td>Associate Professor</td>
<td>Department of Agronomy, Faculty of Crop & Food Sciences, PMAS Arid Agriculture University, Rawalpindi.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Dr. Abdul Ghaffar</td>
<td>Associate Professor</td>
<td>Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Dr. Yousaf Jamal</td>
<td>Assistant Professor</td>
<td>Department of Agriculture, The University of Swabi, Anbar Swabi.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Dr. Zafar Hayat Khan</td>
<td>Associate Professor</td>
<td>Department of Agronomy, Abdul Wali Khan University, Garden Campus, Mardan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Dr. Muhammad Saleem</td>
<td>Principal Scientist</td>
<td>Nuclear Institute for Agriculture & Biology (NIAB), P. O. Box No 128, Jhang Road, Faisalabad.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Dr. Muhammad Naeem Ch.</td>
<td>Assistant Professor/Chairman</td>
<td>Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Dr. Muhammad Bilal Chattha</td>
<td>Assistant Professor</td>
<td>Institute of Agricultural Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Dr. Anser Ali</td>
<td>Assistant Professor</td>
<td>Faculty of Agricultural Sciences, Department of Agronomy, Ghazi University, D. G. Khan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Mr. Riaz Ahmad Ghumman</td>
<td>Ex- Senior Manager Marketing (Agri Services)</td>
<td>Fauji Fertilizer Company Ltd, Lahore.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Dr. Muhammad Aamir Iqbal</td>
<td>Assistant Professor</td>
<td>Department of Agronomy, Faculty of Agriculture, The University of Poonch,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mr. Rabeel Bhatti
Assistant Director (Curriculum),
Higher Education Commission, Islamabad.

The following members attended the preliminary meeting only and could not attend the final meeting due to pre-occupation:

1. Dr. Zammurad Iqbal Ahmed
 Professor,
 Department of Agronomy,
 PMAS Arid Agriculture University, Murree Road,
 Rawalpindi.

2. Dr. Muhammad Shafi
 Professor,
 Department of Agronomy
 The Agriculture University, Peshawar.

The following members attended the final meeting only as special invitee and were not available in preliminary meeting:

1. Prof. Dr. Abdul Khaliq
 Professor,
 Department of Agronomy,
 University of Agriculture, Faisalabad.

2. Dr. Muhammad Ashraf,
 Agronomist,
 Ex. Manager,
 Seeds Pioneer, Pak Seed Ltd, Lahore.

The meeting started with recitation from the Holy Quran. Mr. Rabeel Bhatti, Assistant Director, Curriculum, Higher Education Commission (HEC), Islamabad welcomed the members on behalf of the Chairman, HEC. He briefed the members of the responsibilities of the Commission to review/revise the curriculum. He also informed the honourable members regarding the main purpose of revising the curriculum keeping in view the framework/scheme of studies for Bachelor, Master and Ph.D Degree programmes in the discipline of Agronomy. There was a deliberate discussion among the committee members on the preliminary draft prepared in its last meeting held on 09-11 October, 2017 at HEC Regional Center, Lahore. All those members who have already sent their inputs presented their drafts before the committee for further discussion. All queries and questions were satisfactorily answered by the respective expert members of the Committee.
Prof. Dr. Bashir Ahmad, briefed the participants that key objective of final NCRC is to devise a curriculum that provides a unified framework (guidelines) to institutions offering degrees under the title of Agronomy and also match the global modifications of the Agronomy. He further requested the committee that as Dr. Zammurad Iqbal Ahmed, Secretary NCRC could not attend the final NCRC meeting due to personal reasons, Dr. Aijaz Ahmad Soomro may be selected as a secretary of the committee for final NCRC. The house unanimously agreed and Dr. Aijaz Ahmad Soomro was selected as a Secretary of the committee for final NCRC.

The members focused on nomenclatures of various degree programmes, rationale and scope of Agronomy, titles of different courses offered during 4 years Bachelor programmes, credit hours, learning outcomes, and assessment criteria of Agronomy in different Universities of Pakistan. After detailed discussion and in depth analysis of framework/scheme of studies, Course Learning Outcomes (CLOs) and course contents; the curriculum was finalized for Bachelor of Agronomy.

On second day, courses developed/improved by individual members were presented. Each course was discussed in the whole group and with through discussion on course objectives, learning outcomes, contents, teaching methods, assessment and reference books were reviewed, revised and finalized. After thorough deliberation, preliminary draft curriculum of the undergraduate (4-years) programme prepared in the preliminary meeting for Agronomy was finalized.

On third day, Prof. Dr. Bashir Ahmad, Convener of the Committee, briefed the house about progress made on the previous day. The admission criteria and courses of Master program of Agronomy were reviewed by the committee with changes and addition of courses. Furthermore, it was decided that the university may offer the courses keeping in view their expertise and resources with HEC guidelines in consideration. It was decided that the zero final draft finalized during the meeting shall be circulated by the Secretary of the Committee for final review of all the respective members.

In the end, Mr. Rabeel Bhatti thanked the Convener, Secretary, Co-Secretary and all members of the Committee for sparing their time and for their contribution to prepare the revised draft of the curriculum. He further stated that their efforts will go a long way in developing workable, useful and market oriented comprehensive degree programme in Agronomy. The Convener of the NCRC also thanked the members for their inputs in revising/updating the curriculum to make it more practical, competitive, efficient and realistic. The committee highly appreciated the efforts made by the officials of HEC Regional Centre, Lahore for making arrangements to facilitate the committee and their accommodation and recreation tour. The meeting ended with the vote of thanks to HEC and Mr. Rabeel Bhatti and his team from HEC for providing this academic and professional opportunity for national cause.
RECOMMENDATIONS
The following recommendations are made for implementation of these schemes in the country:

1. The committee appreciates HEC’s role in improvement of Higher Education in the country and recommends uniform implementation of its polices including work load and financial matters in all public sector universities.

2. The committee strongly recommends that mathematics/biology should be considered as deficiency courses and shall not be counted towards the total credit hours of the B.Sc. (Hons.) degree.

3. To strengthen the background of agriculture students in different specializations, it is proposed to allocate at least three foundation courses from agronomy during the first four semesters.

4. The course of crop physiology may be included in interdisciplinary foundation courses template.

5. It is recommended that periodic inter-university/inter-provinces visits of the faculty along with PhD scholars should be made compulsory to enhance the exchange of views and observe the site specific technology developed in different provinces/universities.

6. HEC is requested to review the policy for funding Lab establishment with priority for the proposal relevant to practical facilities of the newly developed courses being offered at different institutions.

7. It is proposed to arrange refresher courses for the faculty at national/international level for effective delivery of new topics/courses amended by NCRC.

8. NCRC recommends to regularly hold meetings of all HODs (at least once in six months).

9. It has been observed that the students opt the major subject before entering the 3rd year. In this regard, they submit their options to the Deans themselves or the coordinator of the undergraduate programmes finalize the selection of students for each department. It is strongly recommended that the chairman of the department may finalize the selection of students on merit basis, because the chairman is dealing with such students in coming years. In this way departments will get rapid development smoothly. This policy should be applied in all agriculture universities to develop / create uniformity.

SUGGESTIONS

1. Higher Education Commission is requested to arrange a training of the in-service faculty through using the capabilities and expertise of the experts from public/private sector for the areas where universities feel deficiency.

2. HEC is requested to ensure availability of at least 10 copies of all recommended books to the departmental libraries of all the Agricultural Universities/Faculties/Colleges of the country and to improve the
library/documentation of the institutions.

3. Professors and Associate Professors should also be considered for different administrative courses run by national policy institutes/public administration staff colleges to enhance administrative and financial management skills.

4. To improve the standard of the higher education at national level, the committee recommends that the appointment of local examiners within the city should be discouraged at MSc (Hons.)/MPhil degree programs.

5. A final copy of the curriculum (2017) must be provided to at least every faculty member of agronomy all over the country.

6. A viable mechanism for follow up of implementation of recommendations/suggestions should be developed.
SCHEME OF STUDIES FOR MS/MSC (HONS) AND PHD AGRONOMY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR-701</td>
<td>Advanced Agronomy</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-702</td>
<td>Applied Crop Ecology-</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-703</td>
<td>Advanced Irrigation Agronomy-</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-704</td>
<td>Agro-Environment Conservation</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-705</td>
<td>Agro-meteorology-Bashir</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-706</td>
<td>Allelopathy in Crop Production</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-707</td>
<td>Applied Conservation Agronomy</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-708</td>
<td>Arid Zone Agronomy</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-709</td>
<td>Biological Crop Potential</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-710</td>
<td>Crop and Environment</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-711</td>
<td>Crop Management on Problem Soils-Rash</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-712</td>
<td>Advanced Crop Modeling</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-713</td>
<td>Crop Nutrition Management</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-714</td>
<td>Crop Production and Herbicides</td>
<td>4(3-1)</td>
</tr>
<tr>
<td>AGR-715</td>
<td>Farming and Cropping Systems</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-716</td>
<td>Field Crop Experimentation</td>
<td>4(3-1)</td>
</tr>
<tr>
<td>AGR-717</td>
<td>Herbicides in Plant and Soil Systems-Ghuman</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-718</td>
<td>Integrated Agriculture</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-719</td>
<td>Modern Concepts of Crop Production</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-720</td>
<td>Recent Advances in Agronomy</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-721</td>
<td>Seed Physiology</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-722</td>
<td>Seed Science and Technology</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-723</td>
<td>Stress Agronomy</td>
<td>4(3-1)</td>
</tr>
<tr>
<td>AGR-724</td>
<td>Sustainable Agriculture</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-725</td>
<td>Water Relations of Plant</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-726</td>
<td>Weed Management</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-727</td>
<td>Climate Change and Agriculture</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>AGR-728</td>
<td>Postharvest Technology of Crops</td>
<td>3(2-1)</td>
</tr>
<tr>
<td>AGR-729</td>
<td>Special Problem</td>
<td>1(0-1)</td>
</tr>
<tr>
<td>AGR-730</td>
<td>Seminar</td>
<td>1(0-1)</td>
</tr>
<tr>
<td>AGR-731</td>
<td>Thesis MSc (Hons.) Agronomy</td>
<td>6(0-6)</td>
</tr>
<tr>
<td>AGR-732</td>
<td>Thesis PhD Agronomy</td>
<td>12(0-12)</td>
</tr>
</tbody>
</table>

Note: Universities/Faculties/Colleges may adopt their own system for course numbers and credit hours for different courses selected/qualified for MSc (Hons) Agronomy will not be permitted to take again in PhD.
AGR-701 ADVANCED AGRONOMY 3(2-1)

Objective
To deeply understand modern concepts of crop growth, phenology and development of plants under varying environments

Learning outcomes
After studying this course, the students will be able to:-
• Understand phenological development of crop plants
• Know effects of photosynthesis and respiration on plant growth and development
• Analyze crop growth and its application in agronomy
• Measure radiation use efficiency

Course outline
• Phenological development of crop plants
• Determinants of crop growth
• Factors affecting development of crop canopy
• Photosynthesis and respiration
• Photosynthetic efficiency and respiration in relation to crop productivity
• Crop management for improving photosynthetic efficiency and harvest index
• Potential for increasing dry matter accumulation in crop plants,
• Dry matter partitioning
• Crop growth analysis, its objectives and agronomic uses
• Growth analysis of individual plants and crops
• Classical and functional growth analysis
• Biological relevance of different growth functions and curve fitting in crop growth studies.

Practical
• Phenological development stages of crop plants
• Use of classical growth formulae for determining various crop growth indices
• Estimation of crop growth rates derived from different fitted growth functions
• Demonstration and calculation of radiation interception and use efficiency

Recommended Books
Objective
To impart better understanding of ecological optima and its relevance to crop production.
To impart comprehension about ecological optima in relation to sustainable food and feed production

Learning outcomes
• Define and describe dynamics of agro-ecosystems.
• Explain ecological features of intensive agriculture.
• Adopt suitable approaches to reduce soil and water pollution under different farming systems.
• Perceive ecological optimization to sustain crop productivity.
• Integrate various farm operations to protect biodiversity

Theory
Ecosystem concepts; Dynamics of Agro-ecosystems; Ecology of crop plant domestication; Ecological risk assessment, Ecological evaluation of different farming systems; Ecological characteristics of intensive agriculture with special reference to environmental pollution; Air pollution; noise pollution; Insecticide pollution, Nuclear pollution, Soil pollution; Pollution due to socio economic factors; Crop productivity and ecological optima; Biodiversity and its ecological role in agro-ecosystems; Ecology of economic crops, oil seed crops, pulses & misc. crops, sugar crops, etc.

Recommended Books

AGR-703 ADVANCED IRRIGATION AGRONOMY 3(2-1)

To impart better understanding of estimation/measurement of environment variables used in irrigation scheduling

Objective
To educate about estimation/measurement of environment variables used in irrigation scheduling.

Learning Outcomes
After studying this course, the students will be able to:-

1. Describe the relationship between irrigation and crop yields
2. Plan suitable irrigation schedules for field crops under different moisture regimes and prevailing weather conditions
 Modify irrigation use with respect to the prevailing weather conditions
3. Use Make use of the drought stress indices for their research endeavors
4. Compare Evaluate the crop growth and yield response under varying irrigation regimen to total water received and drought
5. Interpret the criteria for drought resistance

Course Outlines
- Relationship between irrigation and crop yields
- Effects of irrigation water quality on crop growth and development
- Impact of weather conditions on irrigation scheduling
- Methods of irrigation scheduling
- Moisture sensitive periods
- Indices of drought: Stress degree days, canopy temperature variability; Crop water stress index; maximum allowable depletion, etc.
- Response of yield to irrigation
- Penman's irrigation-yield response analysis
- Concept of potential soil moisture deficit and limiting deficit
- Crop response to total water received and drought
- Criteria for drought resistance
- Concept of lost time for growth and crop yield
- Water use efficiency and factors affecting it.

Recommended Books

AGR-704 AGRO-ENVIRONMENT CONSERVATION 3(3-0)

To enhance the understanding of environmental degradation and conservation through integrated approaches.

Learning Outcomes:

After successful completion of the course, students will be able to:-
1. Describe impact of agricultural practices and industrial/municipal wastes on the environment and ecosystem.
2. Develop strategies to minimize degradation of environment and ecosystem resulting from agro-chemicals and industry.
3. Understand the rules and regulations of environment conservation

Theory
Agro-chemicals: use, abuse, uptake, persistence, degradation and residual effects on ecosystem; Management and recycling of agro-industrial wastes: solid waste, farm waste, sewage sludge etc.; Role of agriculture in environmental conservation; Integrated approaches to reduce the use of agro-chemicals in agriculture. rules and regulations of environment conservation, EPA rules

Recommended Books
AGR-705 AGRO-METEOROLOGY 3(3-0)

Objective
To important knowledge about meteorological optima and its relevance to crop production.

Theory
Scope of agricultural meteorology; Agricultural zones of Pakistan; Crop adaptation and distribution in relation to climate; Crop weather-relationships regarding crop growth and yield formation; Diurnal and seasonal variation in photoperiod and light integral; Atmospheric pollution and plant productivity; Climate change and its potential effects on crop production; Weather and pests of crops; Crop monitoring and forecasting; Drought monitoring and planning for mitigation; Remote sensing; Geographical Information System (GIS); Global Positioning System (GPS) and their application in agricultural meteorology; Use of climate information to improve agricultural productivity.

Recommended Books

AGR-706 ALLELOPATHY IN CROP PRODUCTION 3(2-1)

Learning outcomes
After studying this course, the students will be able to:-
1. Describe allelopathy and types of allelochemicals.
2. Comprehend the mechanism of allelochemicals production, translocation and mode of action.
3. Understand the utilization of allelochemicals in enhancing crops production
4. Acquire the skills of allelopathic extracts preparation and its application

Objective
To educate students about allelopathic phenomena and its utilization in agro-ecosystem for sustaining productivity of crops.
Theory
Concept and history of allelopathy; Allelopathic plants; Types of allelochemicals; Mechanism of allelochemicals’ action; Factors influencing production and effectiveness of allelochemicals; Production, release, absorption and translocation of allelochemicals; Role of allelopathy in agro-eco systems; Interactions among cropping systems; Utilization of allelopathy for pest management; Enhancing crop productivity by utilizing allelopathy; Recent research trends in allelopathy.

Practical
Preparation of allelopathic plant water extracts; Comparison of crop cultivars for their allelopathic effects; Demonstration of allelopathic effects of crop extracts/residues on seed germination and seedling growth of crops/weeds; Identification of allelopathic chemicals.

Recommended Books

AGR-707 APPLIED CONSERVATION AGRONOMY 3(3-0)

Learning Objective
To develop understanding about resource conservation on economic basis with special emphasis on soil and water.

Learning outcomes
After studying this course, the students will be able to:-
- Understand the objectives and principles of resources with their judicious use and conservation
- Explain advance methods of conservation in different farming system
- Use of conventional and modern techniques like biological conservation and farm machinery
- Apply the acquired knowledge to conserve resources with respect to climate change
Theory
Principles, objective and types; Water resources, their conservation and economic use in irrigated and non-irrigated regions; Modern conservation practices in irrigated and non-irrigated areas; Integrated resource conservation in different farming systems; Conservation agronomy and climate change; Use of farm machinery in conservation techniques; Conservation structures; Biological conservation; Recent developments in the field of conservation agronomy.

Recommended Books

AGR-708 ARID ZONE AGRONOMY 3(3-0)

Objective
To broaden the understanding of problems, limitations and potentials of arid areas.

Learning Objective:
- To understand the problem, limitation and their solution in the arid zone agriculture.
- To explore the potential of Arid area and its contribution in national crop production.

Learning Outcomes:
At the completion of the course, students will be able to:

- Characterize the features of Arid Agriculture
- Apply the techniques to address the constraints and problems of Arid zone agriculture.
- Manage the dry spell period during the crop growth.
- Recommend practices for moisture conservation, water shed management
and sustainable crop production in dry land Agriculture.

Theory
Constrains and techniques of arid agriculture; Characteristics of dry land agriculture; Problems, prospects and strategies of dry land agriculture; Moisture availability index; Aridity index; Moisture deficit index; Agronomic approaches for dry land agriculture (tillage requirement, selection of most adaptive crops, sowing of crops, cropping pattern, pasture management, cropping plans to meet the weather conditions, weed control, plant protection measure); Managing dry spells during crop periods, Lay farming for non-arable lands; Recommendations for dry farming areas; Plant adaptation to water stress; Soil and rainfall characteristics in dry land farming; Soil and moisture conservation techniques; Water shed management; Water harvesting; Sustainable dry land crop production.

Recommended Books

AGR -709 BIOLOGICAL CROP POTENTIAL 3(2-1)

Objective
To elaborate the concept of biological potential and exploitation in crops.
Learning Outcomes

After studying this course, the students will be able to:-
1. Understand modern concepts of biological crop potential
2. Describe the relationship between agro-physiological factors and potential yield of crop
3. Collect and analyse the data of growth parameters of crop
4. Examine the determinants of crop growth
5. Analyze the relationship between crops and environment

Theory
Concept of biological crop potential; Agro-physiological factors limiting yield potential of crops; Ecological optima in relation to crop productivity; Blackman's principle of limiting factor; Determinants of crop growth; Components of plant leaf
area expansion, crop canopy development, canopy architecture and interception of solar radiation; Potential for increasing photosynthetic efficiency; Dry-matter partitioning; Modern agro-physiological techniques for harvesting maximum potential of field crops; Crop plants in relation to environment.

Practical
Collection of data pertaining to actual and potential yields of various crops/varieties; Determination of leaf area and dry weight of field crops to calculate relative growth rate, net assimilation rate, etc. Determination of leaf area index, leaf area duration and harvest index of various field crops. Comparative study of crop canopy development in cereals, oilseeds and grain legumes.

Recommended Books

AGR-710 CROP AND ENVIRONMENT 3(3-0)

Objective
To broaden the understanding of relationships between crop and environment.

Learning outcome
1. Understand the environmental physiology and its impact on crop production
2. Explain global warming and greenhouse effects on plant growth and development
3. Elaborate environmental pollution and energy exchange by plants in ecosystem
4. Manage crop production under different environmental conditions.

Course outline

Theory
- Crop environment, components, determinants and their role in crop productivity; Microclimate in relation to crop management; Global warming and green house effects; Environmental pollution and plant growth; Energy exchange by plants in ecosystem; Evapotranspiration and its reduction approaches; Antitranspirants, reflectants; Plant physiological aspects and plant architecture.
Recommended Books

AGR-711 CROP MANAGEMENT ON PROBLEM SOILS 3(3-0)

Objective
To strengthen the knowledge for raising crops successfully on problem soils.

Learning outcome
Upon successful completion of the course, student will be able to:

1. Understand the problem soils and their types
2. Manage different types of problem soils
3. Apply different crop management practices to reduce the intensity of problem soils

Course outline
Theory
- Concept and perspective of crop productivity in eroded, salt affected, water deficit and water-logged soils;
- their improvement and reclamation;
- Site specific cultural practices;
- Fertilizer and irrigation adjustments;
- Specific cropping patterns and crop management practices for economic crop production in problem soils;
- Demonstration of degraded soils

Teaching Methodology
- Lecturing
- Home Assignments
- Field visits/work
- Assessment
- Mid Term
- Written (Long Questions, Short Questions, MCQs)
- Assignments/Quiz
- Final Term
- Written (Long Questions, Short Questions, MCQs)
• Assignments/Quiz

Recommended Books

AGR-712 CROP MODELING 3(2-1)

Objective
To enhance the knowledge of crop modeling and its application in agriculture.

Learning Outcomes:
Upon successful completion of the course, the student will be able to:
1. Understand components of crop modeling,
2. Use different models (DSSAT, APSIM and AQUACROP)
3. Integrate crop models with remote sensing and GIS
4. Apply modelling for crop improvement and predictions

Theory
Philosophy and terminology of system science, scope of system analysis; Crop modeling, concept and types of models, specification and uses; Statistical parameters in modeling; Parameterization and evaluation of crop models; Model application in crops, soil, water and agrometeorology; Modeling for crop improvement and risk assessment; Crop models application in research, education and extension; Integration of crop models with GIS and remote sensing.

Practical
Working with different models like DSSAT, APSIM, AQUACROP; Setting of appropriate coefficients for cultivars, calibration, evaluation and validation; Preparation of different input files; crop management, and experimental data files; Preparation of weather and soil files; Working with sequence, seasonal, economic analysis, easy grapher, etc.

Recommended Books

AGR-713 CROP NUTRIENT MANAGEMENT 3(2-1)

Objective
To equip students with latest developments in crop nutrition.

Learning Outcomes:
At the end of the course, students will be able to:
1. Understand the physiological role of macro and micro-nutrients.
2. Learn modern strategies to improve crop nutrition.
3. Compare the efficacy of different fertilizers in crop plants.
4. Minimize the nutrient losses and apply judicious use of fertilizer.
5. Analyse the nutrient content both in plant and growth media.

Theory
Crop nutrition in modern agriculture; Rationale for use of fertilizers; Biofortification; Physiological classification of minerals; Dynamics of plant nutrients in normal, flooded and salt affected soils; Nutrient uptake and assimilation; Nutrient losses and causes of low efficiency; Improving nutrient use efficiency; Balanced nutrition and integrated plant nutrient management systems; Concept of remote sensing in crop nutrition; Nutrient indexing.

Practical
Demonstration of nutrient deficiency symptoms. Preparation of different nutrient solutions for field, pots and hydroponic cultures; Nutrient analysis (macro and micro) of soil and plants.

Recommended Books
AGR-714 CROP PRODUCTION AND HERBICIDES 3(2-1)

Objective
To enhance students capability about herbicides and their use for crop maximization.

Theory
Herbicides: importance, nomenclature, registration; classification systems; Chemical classification; Bio-herbicides; Herbicide formulations; surfactants and adjuvants; Application and incorporation techniques and equipment; Spray drift management; Herbicide selectivity; Herbicide mixtures and compatibility; Effect of herbicide residues on succeeding crops; Herbicide hazards, toxicity, environmental pollution; Storage, transportation and disposal of herbicides.

Practical
Calculation of herbicide dosage; Determination of active ingredients in various herbicide formulations; Types of sprayers, their parts and spray calibration; Boom height adjustment and study of overlapping. Study of residual effects on soil and succeeding crops. Tank mixing of herbicides.

Recommended Books

AGR-715 FARMING AND CROPPING SYSTEMS 3(3-0)

Objective
To identify the issues of farming/cropping systems and demonstrate research methods for sustainable production.

Learning Outcomes:
Upon successful completion of the course, the student will be able to:

1. Understand the concepts and significance of farming/cropping systems
2. Assess input use efficiencies in various farming/cropping systems
3. Use allied enterprises in agriculture based systems
4. Apply the acquired knowledge for sustainable production
Theory
Concept, scope, classification and components; Agricultural resources, their utilization and management; Major farming and cropping systems of Pakistan; Role of tillage, root dynamics, cover crops, crop residues in cropping system; Assessing input use efficiencies in various farming/cropping systems; Role of precision agriculture in farming system; Study of allied enterprises (livestock, poultry, aquaculture, mushroom culture, tunnel farming); Emerging trends in farming/cropping system research; Researchable issues and research methods in farming and cropping systems.

Recommended Books

AGR-716 FIELD CROP EXPERIMENTATION 3(2-1)

Objective
To plan the experiments according to different design and layout therein the field and to collect the data, analysis it and interpretation.

Learning outcomes
1. formulate null and alternate hypothesis.
2. select appropriate experimental design and execute its layout in the field.
3. analyse the data and interpret the results
4. determine possible relationships among variables
5. summarize the findings of the research and reporting

Theory
Methods of scientific inquiry; general types of experiments; Principles of experimental design; Planning, layout and conducting field experiments; Recording research observations; Transformation of data ; Planned F test; Data processing, analyses and its statistical interpretation; Means separation; Probability; F and t distributions; Regression and correlation; Research results reporting.

Practical
Statistical calculations based on sample data; Exercise in the layout of experiments; Transformation of Experimental data; Preparation of analysis of variance table; Use of different tests of significance; Factorial experiments and
their uses in scientific research; Reporting results of experiment; calculation of linear regression and correlations; Use of statistical packages for data.

Suggested Readings

AGR-717 HERBICIDES IN PLANT AND SOIL SYSTEMS 3(2-1)

Objective
To elucidate role of herbicides in plants and their dynamics in soil and environment.

Learning outcomes
After studying this course, the students will be able to:
• Know the mode of action of herbicides and their effect on photosynthesis, respiration, protein and nucleic acid metabolism etc.
• Understand the fate of herbicides, their lethal effect and interaction
• Demonstrate herbicide resistance, residual effect on germination and seedling growth of succeeding crops
• Use instrumental techniques for herbicide analysis

Theory
Absorption and translocation of herbicides; Effects of herbicides on photosynthesis; respiration, protein, nucleic acid metabolism and enzymes; Metabolism of herbicides in plants; Sub lethal effects of herbicides; Herbicides and soil interaction; Fate of herbicides in soils; Herbicide residues in soil. Bioassay techniques in herbicide residue analysis; Instrumentation techniques for herbicide analysis; Herbicides resistance; Methods to combat herbicide resistance.

Practical
Demonstration of herbicide resistance through dose response test, Demonstration of residual effect on germination and seedling growth of succeeding crops, Demonstration of herbicide movement in soils.

Recommended Books

AGR-718 INTEGRATED AGRICULTURE

Objective
To equip students with the challenges and potential of Pakistan Agriculture.

Learning objectives
To integrate crop hasubandry with livestock, fisheries, cottage and poultry industry for sustainable agriculture (Dr. Nazim, will discuss next meeting)

Learning outcomes
After studying this course, the students will be able to:
1. Define and describe the potential of agriculture for socio-economic uplift of country.
2. Understand challenges faced by Pakistan’s Agriculture and remedial strategies.
3. Comprehend the role of natural resource management in rural development.
4. Evaluate the working of agricultural institutions and agriculture related policies.

Theory
Concept of integrated agriculture; Challenges in Pakistan’s Agriculture; Present scenario and future prospects; Analytical overview: issues and strategies for improvement of crop management, livestock management, fisheries; Cottage industry, national resource management and rural development; Institutions and policies: issues and options.

Recommended Books
AGR -719 MODERN CONCEPTS OF CROP PRODUCTION 3(2-1)

Objectives
1. To enable the students an insight understanding of Agro-physiological factors affecting crop potential.
2. To harvest the maximum out of possessed genetic potential of a variety by integrating all the yield determinants.

Learning outcomes
1. Acquire indepth modern knowledge of crop productivity
2. Analyse the issues of crop production with reference to modern concepts
3. Apply modern techniques for maximizing crop harvest.

Theory
- Concept and indices of agricultural productivity;
- Key issues limiting agricultural productivity in Pakistan;
- Significance of crop management in determining crop productivity; Dynamics of stand establishment;
- Multiple cropping;
- Manipulation of different tillage systems;
- Manipulation of crop development by the use of growth regulators; Concept and components of good agricultural practices (GAP), Organic farming;
- Precision agriculture and its tools;
- Zero tillage: conditions, areas and crops
- Alternate wetting and drying (AWD) techniques: conditions, areas and crops
- Biofertification of staple food crops: concept, significance and crops
- Biotechnology in improving crop production;

Practical
- Study of different factors influencing stand establishment under field conditions;
- Evaluation of some case histories for economic feasibility of different cropping systems;
- Field observation of different tillage systems;
- Filed visits and observation on GAP;
- Demonstrations on the simulation of effects of global warming on agricultural productivity;
• Methods of biofortification of crops (Zn, Fe, Ca etc).
• Visits to different agricultural research institutes and farmers field (where Zero tillage, AWD are under practice).

Recommended Books

AGR-720 RECENT ADVANCES IN AGRONOMY

Objective
To inculcate knowledge with respect to current developments in agronomic research.

Learning Objectives
• To adapt the current research and developments in agronomic research

Learning Outcomes
After studying this course, the students will be able to:
1. Analyze the recent technologies for enhancing field crop productivity
2. Compare traditional and new interventions
3. Evaluate the new tools for agronomic research and development

Theory
Selected topics on recent advances in agronomy; Evaluation of the recent research of the entire field; Lectures and discussions by the specialists in the areas of their research.

Recommended Books
2. Agronomy for Sustainable Development. All volumes of last three years. INRA-CMSE-PME, Dijon, France and Springer, the Netherlands.
5. Sustainable Agriculture Reviews. All volumes of last three years. Springer, the Netherlands.
Objective
To enhance students’ understanding of physiological processes in seeds.

Learning outcomes:
1. Understand embryogenesis and flowers identification
2. Comprehend seed formation and development
3. Classify the chemical composition of seed.
4. Understand growth regulators and their role in seed development and dormancy.
5. Analyse Moisture content, temperature and oxygen relations to germination process

Theory
Seeds and human beings; Review of embryogenesis; Physiological development of “seed”; Implications of seed maturation; Chemical composition of seed, its phylogenetic implications, importance in storage, energy relationships; Dormancy, its survival value, occurrence and persistence of dormancy in cultivated, weedy and wild species, methods of overcoming dormancy; Role of growth regulators in seed development and dormancy; Seed sink strength and intensity; Seed food reserves, location and composition; Physiological and biochemical manifestation of seed aging; Seed deterioration-factors influencing rate of deterioration, theories of seed dying; Concept of seed vigor; Seed enhancement-production and yield; Requirements for germination-re-hydration and water relations, temperature and oxygen relations.

Practical

Recommended Books
AGR-722 SEED SCIENCE AND TECHNOLOGY 3(2-1)

Objective
Augmenting students capacity regarding principles of seed production and innovations in seed technology.

Learning outcome
1. Understand functional concept of seed production
2. Evaluate Seed vigor, quality management and maintenance
3. Understand the role of seed industry, concept and future need for seed demand
4. Examine Seed health, fortification and invigoration and ageing

Theory
Functional concept of seed production; Recent trends in seed technology and management; Hybrid and synthetic seed production; Seed vigor and quality; Ecological aspects of seed production; Seed certification standards; Seed storage, structures and related problems; Seed industry. Import/export of seed; Seed legislation and quarantine laws; Genetically modified seeds (GMOs); Transgenetics for crop improvement; Seed quality, control and management; Seed fortification and invigoration; Seed health. Organic seed production.

Practical
Analysis for quality tests: physical purity, seed viability, germination and vigor tests. Seed cleaning, grading, treatment. Seed priming. Sampling techniques involved in seed testing. Visit to seed farms, storage houses and processing plants.

Recommended Books
1. Advances in seed sciences and technology 2006 Agro Bios, India.

AGR-723 STRESS AGRONOMY 3(2-1)

Objective
To broaden the knowledge regarding various stresses influencing crop production and stress management
Learning Outcomes:
At the end of the course, students will be able to:
1. Understand types of stresses and their impact on morphological, physiological and biochemical processes
2. Describe the natural tolerance ability of various crop plants and manage crops through agro-management practices
3. Induce the different stress in different growth media in field, pots and hydroponic experiments

Theory
Concepts of stress Agronomy; Plant stress factors and their impact on productivity of cropping systems; Types of stresses (water, nutrient, salt, temperature, CO2, light, inter and intra plant competition, etc.), Crop responses and adaptation to different stresses and their individual and interactive impact on plant growth and development; Agro-management practices for successful crop husbandry under stress environments.

Practical
Experiments will be designed to invoke understanding among the students about plant behavior to various types of stresses. Field visits to demonstrate types of stresses and their impact on crop productivity.

Recommended Books

AGR-724 SUSTAINABLE AGRICULTURE
Learning objective 3(3-0)

Objective
To extend students' knowledge about management of agricultural resources on sustainable basis.

Learning Outcomes
1. learn the concept, components and significance of Sustainable Agriculture.
2. plan efficient utilization of soil, and water resources.
3. Acquire the understanding and skill of Integrated nutrients management.
4. Examine the effect of crop production practices on environmental
5. pollution.

Theory
Definition, concept and significance; Evolution of sustainable agriculture; Management practices for sustainable agriculture; Sustainable utilization of land water, resources and agro-biodiversity; Integrated nutrient management; Sustainable Weed management; Integrated farming systems to sustain farm productivity; Alternate and uses; Agriculture; Climate change and carbon sequestration; Latest research methodologies related to the above topics.

Recommended Books

AGR-725 WATER RELATIONS OF PLANTS

3(2-1)

Objective
To enhance the understanding of relationship between plants and water.

Learning Outcomes:
At the end of the course, students will be able to:
1. Define the terminology and describe theories related to soil plant relationship
2. know the physico-biochemical role of water in crop plants
3. Understand mechanisms involved in water mobility from soil through the plant into the atmosphere.
4. Analyze the plant water status and irrigate the crop as per requirement to ensure the judicious use of water
5. Learn practically induce the water stress in different growth media in field, pots and hydroponic experiments
Theory
Importance of water in plants; Physical and chemical properties of water; The ascent of sap; The cohesion mechanism, anatomy of pathway; water potential gradient, capillary rise in xylem; Free energy and chemical potential; Water potential and its components; analysis of chemical potential; Standard state, hydrostatic pressure, water activity and osmotic potential; Van’t Hoff equation, matric potential; Ohm’s law to study the movement of water in the soil-pant atmosphere system.

Practical
Techniques and experimental approaches for measurement of plant water status: Measurement of water content, water potential, pressure chamber technique and psychrometric techniques. Methods of inducing water stress in plants.

Recommended Books

AGR-726 WEED MANAGEMENT 3(2-1)

Objective
To acquaint students with comprehensive knowledge of weed management in field crops.

Theory
Concept of weed management and its significance in modern agriculture; Weed management using principles of competition, Integrated weed management; weed management for field crops, Weed Management for Horticultural crops, Weed management in lawn, turf grass, pastures, forestry and range lands, Management of problematic, parasitic and non-cropped area, Invasive weeds and their management, Herbicide tolerant crops, herbicide resistant weeds and their management, Natural products as lead for new herbicides.

Practical:
Identification and collection of weeds; Demonstration of competitive effect of weeds on crop growth, Determination of critical period of weed interference in crops; use of tillage implements for effective and economical weed control. Testing of herbicide resistance in weeds.
Recommended Books

AGR -727 CLIMATE CHANGE AND AGRICULTURE 3(3-0)

Objective
To develop ink-link about crop production under changing climate.

Learning Outcomes
After studying this course, the students will be able to:-

1. Comprehend importance of climate in agriculture.
2. Compare climate variability and change: past, present and future scenario
3. Analyze impact of climate change in different regions;
4. Interpret influence of climate change on productivity of major and minor crops;
5. Examine implications of changing climatic scenario for pests, livestock and natural resources;
6. Design strategies for managing climate change and vulnerability;

Theory:
Climate and agriculture; Climate variability and change-past, present and future scenario; Impact of climate change in different regions; Influence of climate change on productivity of major and minor crops; Implications of changing climatic scenario for pests, livestock and natural resources; Strategies for managing climate change and vulnerability; Capacity building and action plan for policy makers and planners.
Recommended Books

AGR-728 POSTHARVEST TECHNOLOGY OF CROPS

Objective

Learning objectives

To educate students with harvesting post-harvest technology, losses and marketing of crop produce

Learning outcomes

After studying this course, the students will be able to:-

• Describe the importance of post harvest technology and optimum harvesting time of crops
• Understand about the processing, grading, seed treatment, storage of different crops
• Impart new techniques for harvesting and processing of crop produce
• Demonstrate different harvesting and post harvesting processes along with packing and marketing of crops

Theory

Concepts, objectives and importance of Post harvest Technology in field crops. Objects of harvesting, threshing, processing, cleaning and grading, Seed treatment and storage. Modern technology of harvesting, threshing, shelling, cleaning, drying, grading of cereal grains. Reaping, beating/threshing, cleaning and drying of wheat and paddy rice. Picking, ginning and separating lint and seed of cotton. Cutting, stripping and topping of sugarcane. Harvesting,
beating/threshing and cleaning of grain legumes and oilseeds. Digging, cleaning, topping and washing of root and tuber crops. Marketing of field crop products.

Practical
Demonstration of harvesters, reapers and pickers, threshers, air screen cleaners (Wheat and paddy) and ginners (Cotton). Field demonstration for sugarcane cutting and sugar beet digging by manual methods. Seed processing, cleaning, grading and packing practices in cereals, legumes, oilseeds, condiments, spices and vegetables etc. Visits of local farms.

Recommended Books

AGR-729 SPECIAL PROBLEM

Objective
To broaden student capacity for handling a project independently.

Preparation of research proposals for plant science. Field/Laboratory Experiment. Collection, Compilation and presentation. Interpretation of results and report writing by the student.

Note: The post-graduate students will be assigned the topics on recent developments in agronomy by the concerned teacher.

AGR-729 SEMINAR

Objective
To improve students’ communication and presentation skills.

Selection of topic, preparation of material for presentation, and presentation by the student in the class on a particular topic.

Note: M.Sc (Hons.) students will deliver one seminar while PhD students will deliver two seminars. The Seminar delivered on synopsis/research proposal and/or thesis will not be considered extra credit hour for academic purposes.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR-730</td>
<td>THESIS MSc (HONS) AGRONOMY</td>
<td>6(0-6)</td>
</tr>
<tr>
<td>AGR-731</td>
<td>THESIS PhD</td>
<td>12(0-12)</td>
</tr>
</tbody>
</table>
LIST OF RECOMMENDED BOOKS FOR AGRONOMY

4. Agronomy for Sustainable Development. All volumes of last three years. INRA-CMSE-PME, Dijon, Francis and Springer, The Netherlands.

150. Paul C. Struik. 2007. Plant Research International and Wageningen University, Netherland

203. Sustainable Agriculture Reviews. All volumes of last three years. Springer, the Netherlands.

