CURRICULUM
OF
CROP PHYSIOLOGY
FOR
BS
(Revised 2018)

HIGHER EDUCATION COMMISSION
ISLAMABAD
CURRICULUM DIVISION, HEC

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Syed Sohail H. Naqvi</td>
<td>Executive Director</td>
</tr>
<tr>
<td>Mr. Muhammad Javed Khan</td>
<td>Adviser (Academic)</td>
</tr>
<tr>
<td>Malik Arshad Mahmood</td>
<td>Director (Curri)</td>
</tr>
<tr>
<td>Dr. M. Tahir Ali Shah</td>
<td>Deputy Director (Curri)</td>
</tr>
<tr>
<td>Mr. Farrukh Raza</td>
<td>Asst. Director (Curri)</td>
</tr>
<tr>
<td>Mr. Abdul Fatah Bhatti</td>
<td>Asst. Director (Curri)</td>
</tr>
</tbody>
</table>

Composed by: Mr. Zulfiqar Ali, HEC, Islamabad
CONTENTS

1. Introduction 7
2. Framework for 4-years BSc (Hons.) in Crop Physiology 15
3. Scheme of Studies of BSc (Hons.) in Crop Physiology 18
4. Detail of Courses for BSc (Hons.) in Crop Physiology 20
5. Annexure A to F 46
6. Recommendations 69
PREFACE

The curriculum of subject is described as a throbbing pulse of a nation. By viewing curriculum, one can judge the stage of development and its pace of socio-economic development of a nation. With the advent of new technology, the world has turned into a global village. In view of tremendous research taking place world over new ideas and information pours in like of a stream of fresh water, making it imperative to update the curricula after regular intervals, for introducing latest development and innovation in the relevant field of knowledge.

In exercise of the powers conferred under Section 3 Sub-Section 2 (ii) of Act of Parliament No. X of 1976 titled “Supervision of Curricula and Textbooks and Maintenance of Standard of Education” the erstwhile University Grants Commission was designated as competent authority to develop, review and revise curricula beyond Class-XII. With the repeal of UGC Act, the same function was assigned to the Higher Education Commission under its Ordinance of 2002, Section 10, Sub-Section 1 (v).

In compliance with the above provisions, the HEC undertakes revamping and refurbishing of curricula after regular intervals in a democratic manner involving universities/DAIs, research and development institutions and local Chamber of Commerce and Industry. The intellectual inputs by expatriate Pakistanis working in universities and R&D institutions of technically advanced countries are also invited to contribute and their views are incorporated where considered appropriate by the National Curriculum Revision Committee (NCRC).

A committee of experts comprising of conveners from the National Curriculum Revision Committees of HEC in the disciplines of Basic, Applied, Social Sciences, Agriculture and Engineering met in 2007 & 2009 and developed the unified templates to standardize degree programs in the country so as to bring the national curriculum at par with international standards, and to fulfill the national needs. It also aimed to give a basic, broad based knowledge to the students to ensure the quality of education.

In line with above, NCRC comprising senior university faculty and experts from various stakeholders and the respective accreditation councils has finalized the curriculum for Crop Physiology. The same is being recommended for adoption by the universities/DAIs channelizing through relevant statutory bodies of the universities.

MUHAMMAD JAVED KHAN
Adviser (Academics)

October, 2017
Abbreviations Used:

NCRC. National Curriculum Revision Committee
VCC. Vice-Chancellor’s Committee
EXP. Experts

ORIENTATION COURSES BY LI, HEC

REVIEW

COMMENTS

PRINTING OF CURRI.

IMPLEMENTATION OF CURRICULUM

NCRC.

CONSULTATION OF NCRC.

PREP. OF DRAFT BY NCRC

FINALIZATION OF DRAFT BY NCRC

APPRAISAL OF 1ST DRAFT BY EXP

PREP. OF FINAL CURRI.

QUESTIONNAIRE

FOLLOW UP

FINAL STAGE

CURRI. IN DRAFT STAGE

COLLECTION OF EXP NOMINATION UNI, R&D, INDUSTRY & COUNCILS

CURRI. UNDER CONSIDERATION

STAGE-I

STAGE-II

STAGE-III

STAGE-IV
CURRICULUM DEVELOPMENT CYCLE

- Nominations from all stakeholders
- Selection of relevant members
- Formulation of NCRC
- Preliminary meeting/preparation of draft
- Circulation of draft for feedback (local/foreign)
- Composing/printing
- Convening of final NCRC
- Dissemination (website/hard copies)
The final meeting of National Curriculum Revision Committee (NCRC) in the discipline of Crop Physiology for Bachelor, Master and Ph.D degree programmes was held from February 19-21, 2018 (03 days) at HEC, Regional Center, Peshawar. Experts from academia, research and development participated in the meeting. Dr. Muhammad Idrees (Director, Academics Division, HEC, Pakistan) coordinated the NCRC meeting. The list of the participants is as below:

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Title / Position</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. Qamaruddin Chachar</td>
<td>Chairman / Professor, Department of Crop Physiology, Sindh Agriculture University, Tandojam.</td>
<td>Convener</td>
</tr>
<tr>
<td>2</td>
<td>Dr. Fahim Nawaz</td>
<td>Assistant Professor, Department of Agronomy, Faculty of Agricultural & Envr. Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan.</td>
<td>Secretary</td>
</tr>
<tr>
<td>3</td>
<td>Dr. Abdul Khaliq</td>
<td>Professor, Department of Agronomy, University of Agriculture, Faisalabad</td>
<td>Member</td>
</tr>
<tr>
<td>4</td>
<td>Dr. Mukhtar Alam</td>
<td>Professor / Dean, Faculty of Science, Department of Agriculture, University of Swabi, Anbar Swabi.</td>
<td>Member</td>
</tr>
<tr>
<td>5</td>
<td>Dr. Muhammad Akmal</td>
<td>Professor / Chairman, Department of Agronomy, The University of Agriculture, Peshawar</td>
<td>Member</td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td>Position/Advisor</td>
<td>Institution</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>Dr. Muhammad Yasin Ashraf (TI)</td>
<td>Professor / Head</td>
<td>Soil and Environmental Sciences / Manager Academic Cell</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PAEC / Nuclear Institute for Agriculture & Biology (NIAB), Jhang Road, Faisalabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Member</td>
</tr>
<tr>
<td>7</td>
<td>Dr. Bashir Ahmad</td>
<td>Professor</td>
<td>Department of Agronomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The University of Agriculture, Peshawar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Member</td>
</tr>
<tr>
<td>8</td>
<td>Dr. Fauzia Yusuf Hafeez (TI)</td>
<td>Professor / Advisor</td>
<td>Department of Biosciences, COMSATS Institute of Information Technology, Islamabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Member</td>
</tr>
<tr>
<td>9</td>
<td>Dr. Shad Khan Khalil</td>
<td>Meritorious Professor</td>
<td>Department of Agronomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The University of Agriculture, Peshawar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Member</td>
</tr>
<tr>
<td>10</td>
<td>Dr. Jalal-ud-Din</td>
<td>Principal Scientific Officer</td>
<td>Wheat Wide Crosses Programme, Institute of Crop Sciences, National Agriculture Research Centre (NARC), Islamabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Member</td>
</tr>
<tr>
<td>11</td>
<td>Dr. Azra Yasmeen*</td>
<td>Associate Professor</td>
<td>Department of Agronomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bahauddin Zakariya University, Multan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Member</td>
</tr>
<tr>
<td>12</td>
<td>Dr. Shahjahan Shabbir Ahmed Rana</td>
<td>Associate Professor</td>
<td>Department of Biotechnology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BUIITEMS, Iqbal Hall, Takatu Campus, Airport Road, Quetta</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Member</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Designation</td>
<td>Institution</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>13.</td>
<td>Dr. Sajid Ali</td>
<td>Assistant Professor</td>
<td>Institute of Agricultural Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore</td>
</tr>
<tr>
<td>14.</td>
<td>Dr. Rasheda Jabeen*</td>
<td>Assistant Professor</td>
<td>Department of Biology & Life Sciences, Lahore Garrison University, Lahore</td>
</tr>
<tr>
<td>15.</td>
<td>Dr. Anser Ali</td>
<td>Assistant Professor</td>
<td>Department of Agronomy, Ghazi University, D. G. Khan</td>
</tr>
<tr>
<td>16.</td>
<td>Ms. Irfana Parveen Bhatti*</td>
<td>Assistant Professor</td>
<td>Department of Crop Physiology, Sindh Agriculture University, Tandojam</td>
</tr>
<tr>
<td>17.</td>
<td>Dr. Syed Rehmat Ullah Shah</td>
<td>Associate Professor</td>
<td>Department of Agronomy, Lasbela University of Agriculture, Water & Marine Sciences, Balochistan.</td>
</tr>
<tr>
<td>18.</td>
<td>Dr. Muhammad Aamir Iqbal</td>
<td>Assistant Professor</td>
<td>Department of Agronomy. The University of Poonch, Rawalakot, Azad Jammu & Kashmir</td>
</tr>
<tr>
<td>19.</td>
<td>Dr. Riaz Ahmad Afridi**</td>
<td>Research Officer (Plant Ecophysiologist)</td>
<td>Plant Physiology Research Program, Agriculture Research Institute,</td>
</tr>
</tbody>
</table>
Tarnab, Peshawar

20. Dr. Abdul Aziz Khakwani**
 Assistant Professor,
 Department of Agronomy,
 Faculty of Agriculture,
 Gomal University, D.I. Khan

21. Dr. Muhammad Idrees
 Director (Curriculum),
 Higher Education Commission,
 Islamabad

* These members attended preliminary NCRC meeting only
** These members attended the final NCRC meeting only

NCRC Agenda

The agenda of NCRC for Crop Physiology was as follows:

1. To finalize the draft curriculum in the discipline of Crop Physiology and to bring it at par with international standards.

2. To finalize the eligibility criteria for Bachelor, Master and PhD level programs.

3. To finalize preface, mission, vision, preamble, and rationale of the subject.

4. To finalize objectives / learning outcomes, list of contents and assessment criteria (formative & summative) aligned with Bachelor programs (vertical approach) and other Master programs (horizontal approach).

5. To incorporate/suggest latest reading materials/references (local & international) against each course.

6. To finalize contents keeping in view the uniformity across other disciplines and avoiding overlapping.

7. To make recommendations for promotion/development of the discipline, keeping in view the futuristic needs of the society.

The meeting started with recitation from the Holy Quran. Mr. Arshad Kamran, Director General, HEC Regional Center Peshawar and Dr. Muhammad Idrees, Director (Curriculum), HEC Islamabad welcomed the members on behalf of Chairman HEC. All the participants introduced themselves highlighting their qualification, experience and area of expertise. Keeping with the tradition, Mr. Arshad Kamran, Director General, HEC Regional Center Peshawar requested the
Convener, Prof. Dr. Qamaruddin Chachar and Secretary, Dr. Fahim Nawaz of the NCRC to continue the proceeding to finalize the curriculum.

In first session, Dr. Muhammad Idrees presented the agenda and objectives of the NCRC. He highlighted the importance of this meeting and emphasized for adaptation of general rules of curriculum development and revision like scope of the subject/programme, horizontal & vertical alignment, rule of flexibility and adaptability keeping in view the futuristic approach, market value/job market and social parity. He also shared a template for finalizing the curricula according to paradigm shift of including learning outcomes (Bloom’s Taxonomy), teaching methods and assessment. The template was unanimously accepted to be followed. It was also agreed to add preamble, programme objectives, programme learning outcomes, teaching methodology and assessment segments in the curricula.

Prof. Dr. Qamaruddin Chachar, briefed the participants about outcome of preliminary NCRC meeting. He informed the participants that in preliminary NCRC meeting, a draft regarding the outline of curriculum was prepared after thorough discussion according to the unified framework (guidelines) to institutions offering degrees under the title of Crop Physiology. The house unanimously agreed to pursue the same track to finalize Curriculum in the field of Crop Physiology in current meeting.

In next session the house openly discussed the nomenclature of the discipline, preface, objectives of the programme, learning outcomes, methods of instruction and learning environment, assessment and operational framework. After long deliberations, the committee also finalized such aspects of the degree as framework/scheme of studies, the duration of the programme, number of semesters, number of weeks per semester, total number of credit hours, number of credit hours per semester, weightage of breadth and depth courses and weightage of theory and practical of undergraduate 4-years programme for Crop Physiology. Furthermore, list of courses (core & elective) and semester wise breakup of courses were also discussed and finalized unanimously.

On second day, each course was discussed and the course objectives, learning outcomes, contents, teaching methods, assessment and reference books were reviewed, revised and finalized. After an in-depth discussion draft curriculum of the undergraduate (4-years) programme for Crop Physiology was finalized. In the evening session, the courses of postgraduate programme were reviewed and finalized. The house unanimously agreed to include a new course named Root Physiology for Masters programme. Moreover, it was agreed to merge the course Recent Advances in Crop Physiology into Advanced Crop Physiology with modification in course contents.
On third day, the Secretary briefed the house about the deliberations and progress made during two days exercise of the meeting. The preamble, mission statement, eligibility criteria, and assessment tools in the curricula were finalized. Moreover, semester wise split of the courses was discussed and finalized. In the end, Dr. Muhammad Idrees thanked the Convener, Secretary and all members of the NCRC Crop Physiology for sparing their precious time and taking pain to travel a long way from across the country for the noble cause of finalizing the curriculum. He further stated that their efforts will go a long way in developing workable, useful and market oriented comprehensive degree programme in Crop Physiology. The Convener of the NCRC thanked the members for their keen interest and valuable input in finalizing the curriculum to make it more feasible, competitive, efficient and realistic. The Committee highly appreciated the efforts made by the officials of HEC Regional Centre, Peshawar for making arrangements to facilitate their comfortable stay. The members extended their heartfelt felicitations to the Convener and Secretary of the Committee. The meeting ended with the vote of thanks to Dr. Muhammad Idrees and his team from HEC for providing the academic and professional opportunity for national cause.

Recommendations

After thorough discussion, the participants of the National Curriculum Revision Committee in Crop Physiology 2018 formulated the following recommendations for uniform and effective implementation of the HEC policies at national level.

- The committee appreciates the role of HEC in improvement of Higher Education in the country and recommends uniform implementation of its policies including work load and financial matters in all public sector universities.
- The respective departments of agriculture at province and federal level should be approached for recognition of degree in Crop Physiology for recruitment of graduates.
- Funding may be advanced for the purchase of equipment to be used for research and training regarding physiological studies in crops that can be of equally beneficial for sister disciplines.
- Emphasis should be given on the physiological basis of crop adaptation in the context of changing climatic scenario as a futuristic vision for sustaining agricultural productivity.
- The committee strongly recommends that mathematics/biology should be considered as deficiency courses and shall not be counted towards the total credit hours of the undergraduate degree programs.
- The course of crop physiology may be included in interdisciplinary foundation courses template.
NCRC recommends to hold regularly meetings of all experts in Crop Physiology (at least once in six months).

Suggestions

- HEC is requested to ensure availability of at least 10 copies of all recommended books to the departmental libraries of all the Agricultural Universities/Faculties/Colleges of the country and to improve the library/documentation of the institutions.
- Professors and Associate Professors should also be considered for different administrative courses run by national policy institutes/public administration staff colleges to enhance administrative and financial management skills.
- To improve the standard of the higher education at national level, the committee recommends that the appointment of local examiners within the city should be discouraged at MSc (Hons.)/MPhil degree programs.
- A final copy of the curriculum (2018) must be provided to at least every faculty member of Crop Physiology all over the country.
- Follow up meetings may be arranged to further revise and finalize the curriculum/learning outcomes and recommendations of present NCRC.
- Viable mechanism for follow up of implementation of recommendations / suggestions should be developed.

The meeting ended with vote of thanks to and from the Chair.

Programme Objectives:

1. Discover, formulate and demonstrate new principles of crop improvement and soil-crop management so that Pakistan’s agriculture is socially viable, profitable for the farmer, and competitive on world markets.

2. Discover, formulate, and demonstrate new principles for prevention and management of diseases, insects, and weeds affecting field, specialty food, and amenity crops.

3. Conduct fundamental research to discover new knowledge and advance the frontiers of the crop and pest management sciences.

4. Develop and deliver research results in the environmental sciences to improve agricultural profitability while decreasing adverse impacts on the environment, both local and global.

Vision

Produce innovation-oriented Crop Physiology graduates who can contribute to the betterment of agriculture, environment and society

Mission

To impart the best quality Crop Physiology education through advanced teaching tools providing impetus for sustainable socio-economic development of Pakistan.
PREAMBLE

With the advent of new technologies, the world has turned into a global village. In view of tremendous research taking place world over new ideas and information pours in like a stream, making it imperative to update the curricula after regular intervals, for introducing latest development and innovation in the relevant field of knowledge. In exercise of the powers conferred under Section 3 Sub-Section 2 (ii) of Act of Parliament No. X of 1976 titled “Supervision of Curricula and Textbooks and Maintenance of Standard of Education” the erstwhile University Grants Commission was designated as competent authority to develop review and revise curricula beyond Class-XII. With the repeal of UGC Act, the same function was assigned to the Higher Education Commission under its Ordinance of 2002 Section 10 Sub-Section 1 (v). In compliance with the above provisions, the HEC undertakes revamping and refurbishing of curricula after regular intervals in a democratic manner involving universities/DAIs, research and development institutions and local Chamber of Commerce and Industry. The intellectual inputs by expatriate Pakistanis working in universities and R&D institutions of technically advanced countries are also invited to contribute and their views are incorporated where considered appropriate by the National Curriculum Revision Committee (NCRC).

RATIONALE

Considering the recent advancements in the science and technology and their impacts in the field of Crop Physiology, coupled with contemporary requirements of Outcome Based Education (OBE), there is a dire need to update the curriculum of Crop Physiology program.

SCOPE

The scope of the document is to provide minimum standards in the form of guidelines for the development, delivery and assessment of the Crop Physiology program. The guideline areas include; Program Educational Objectives (PEOs), Program Learning Outcomes (PLOs) and Course Learning Outcomes (CLOs), scheme of studies, course outlines, credit hours distribution, assessment criterion, and recommendations.
Eligibility Criteria for Bachelor
FSc Pre-Medical/Pre-Engineering or equivalent

Eligibility Criteria for Master
Bachelor in Crop Physiology/Agronomy

Eligibility Criteria for PhD
Master in Crop Physiology/Agronomy
FRAMEWORK FOR 4-Year BSc (Hons.) in Crop Physiology

Non-Agricultural Domain

<table>
<thead>
<tr>
<th>Knowledge Area</th>
<th>Subject Area</th>
<th>Name of Course</th>
<th>Cr</th>
<th>Total Courses</th>
<th>Total Credit</th>
<th>% Area</th>
<th>% Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities</td>
<td>English</td>
<td>English-I (Functional English)</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>19.35</td>
<td>4.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>English-II (Communication Skills)</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>19.35</td>
<td>4.44</td>
</tr>
<tr>
<td>Culture</td>
<td>Pakistan Studies</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>12.9</td>
<td>2.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Islamic Studies/Ethics</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>12.9</td>
<td>2.96</td>
<td></td>
</tr>
<tr>
<td>Social Sciences</td>
<td>Marketing & Agri Business</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>19.35</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rural Development</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>19.35</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>Computing</td>
<td>IT</td>
<td>Introduction to Communication Technology</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>9.70</td>
<td>2.22</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>Mathematics/Biology</td>
<td>Math-I/Botany</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>19.35</td>
<td>4.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Math-II/Zoology</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>19.35</td>
<td>4.44</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
<td>Statistic-I</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>19.35</td>
<td>4.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statistic-II</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>19.35</td>
<td>4.44</td>
</tr>
</tbody>
</table>

Sub-Total:

<p>| | 11 | 31 | 100 | 23 |</p>
<table>
<thead>
<tr>
<th>Interdisciplinary</th>
<th>Agriculture Foundation</th>
<th>Crop Physiology</th>
<th>3</th>
<th>9</th>
<th>27</th>
<th>27.83</th>
<th>21.09</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Agronomy</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plant Breeding and Genetics</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entomology</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plant Pathology</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food Technology</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horticulture</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil Science</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agricultural Economics</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting Courses</td>
<td>Breadth Courses</td>
<td>Agricultural Extension</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Forestry & Range Management</td>
<td>3</td>
<td>4-6</td>
<td>12-18</td>
<td>12.37</td>
<td>9.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Animal Sciences</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic Bio-Chemistry</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agricultural Engineering</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any other Recommended by Universities</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Courses</td>
<td>Major Based Core (Depth)</td>
<td>Major</td>
<td>3</td>
<td>18-20</td>
<td>54-60</td>
<td>56.67</td>
<td>42.18</td>
</tr>
<tr>
<td>Project/Internship</td>
<td>Project/Internship</td>
<td>Project/Internship</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td>31-35</td>
<td>97-109</td>
<td>100</td>
<td>77</td>
</tr>
<tr>
<td>Grand-Total:</td>
<td></td>
<td></td>
<td></td>
<td>42-46</td>
<td>128-140</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Semester I</td>
<td>Credits</td>
<td>Semester II</td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Islamic Studies/ Ethic (optional for Non-Muslim Students)</td>
<td>2(2+0)</td>
<td>Introduction to Economics and Agricultural Economics</td>
<td>3(3+0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Mathematics /Biology</td>
<td>3(3+0)</td>
<td>Introductory Genetics</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Soil Science</td>
<td>3(2+1)</td>
<td>Introductory Horticulture</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Agriculture</td>
<td>3(2+1)</td>
<td>Introduction to Plant Pathogens</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English Text, Grammar and Composition</td>
<td>3(3+0)</td>
<td>Field Crop Production-I</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pakistan Studies</td>
<td>2(2+0)</td>
<td>Introductory Biotechnology</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Agriculture Extension and Education</td>
<td>2(2+0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>18</td>
<td>Total Credit Hours</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester III</td>
<td>Credits</td>
<td>Semester IV</td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Plant Breeding</td>
<td>3(2+1)</td>
<td>Introductory Entomology</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Biochemistry</td>
<td>3(2+1)</td>
<td>Introductory Crop Physiology</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Pest Management</td>
<td>3(2+1)</td>
<td>General Soil Science</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Biotechnology</td>
<td>3(2+1)</td>
<td>Applied Entomology</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Food Science & Technology</td>
<td>3(2+1)</td>
<td>Farm Mechanization</td>
<td>2(1+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Animal Husbandry</td>
<td>2(1+1)</td>
<td>Computer Applications</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>17</td>
<td>Total Credit Hours</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester V</td>
<td>Credits</td>
<td>Semester VI</td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Physiological Processes of Crop Plants</td>
<td>3(2+1)</td>
<td>Physiology of Cereals</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Nitrogen Fixation</td>
<td>3(2+1)</td>
<td>Seed Physiology</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleic Acid & Protein Synthesis</td>
<td>3(2+1)</td>
<td>Plant Growth Substances</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Cell Structure and Functions</td>
<td>3(2+1)</td>
<td>Physiology of Crop Nutrition</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary Statistics</td>
<td>3(2+1)</td>
<td>General Biochemistry</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
<td>Total Credit Hours</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester VII</td>
<td>Credits</td>
<td>Semester VIII</td>
<td>Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology of Legumes and Cash Crops</td>
<td>3(2+1)</td>
<td>Carbon Metabolism in Plants</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Molecular Biology</td>
<td>3(2+1)</td>
<td>Physiological Aspects of Tissue Culture</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress Physiology</td>
<td>3(2+1)</td>
<td>Crop Ecology</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Water Relations</td>
<td>3(2+1)</td>
<td>Environmental Physiology</td>
<td>3(2+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Growth and Development</td>
<td>3(2+1)</td>
<td>Internship and Report Writing</td>
<td>4(0+4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
<td>Total Credit Hours</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Total Credit Hours</td>
<td></td>
<td></td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCHEME OF STUDIES
FOR 04 YEARS BACHELOR IN CROP PHYSIOLOGY

<table>
<thead>
<tr>
<th>Subject/Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introductory Crop Physiology</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>2. Basic Physiological Processes of Crop Plants</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>3. Fundamentals of Nitrogen Fixation</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>4. Plant Cell Structures and Functions</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>5. Physiology of Cereals</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>6. Seed Physiology</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>7. Plant Growth Substances</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>8. Physiology of Crop Nutrition</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>9. Physiology of Legumes and Cash Crops</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>10. Introductory Molecular Biology</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>11. Stress Physiology</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>12. Plant Water Relations</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>13. Plant Growth and Development</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>14. Carbon Metabolism in Plants</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>15. Physiological Aspects of Tissue Culture</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>16. Crop Ecology</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>17. Environmental Physiology</td>
<td>3 (2-1)</td>
</tr>
<tr>
<td>18. Internship</td>
<td>4 (0-4)</td>
</tr>
</tbody>
</table>

Total Major Courses Credit Hours 55

Note: Universities and Colleges may adopt their own system for course numbers for different degrees.
DETAIL OF COURSES

Title of the Course: Introductory Crop Physiology
Credit Hours: 3 (2-1)
Prerequisites: N/A

Specific Objectives of Course:

- To familiarize students with basic concepts in crop physiology

Learning Outcomes:

At the end of the course, students will be able to:

1. Know the importance of crop physiology
2. Know the equipment and apparatus used for physiological studies in plants
3. Understand basic concepts and principles underlying physiological processes
4. Prepare solutions of different types and strengths
5. Pursue further studies in the field of crop physiology, agronomy molecular biology, biochemistry and ecology etc.

Theory:

- Concept and significance of crop physiology
- Terminology used in crop physiology
- The plant cell
- Solutions, suspensions colloidal systems and buffers in plant cells-their types and physicochemical properties
- Water uptake and transport in crop plants
- Plant nutrients-their classification and role in plants
- Photosynthesis and respiration
- Seed germination and dormancy
- Growth and development in plants
- Growth substances
- Introduction to biotechnology

Practical:

- Equipment used in crop physiology
- Preparation of solutions/buffers of different concentration and pH
- Measurement of soil and plant water relations
- Seed germination and seedling growth
- Demonstration of nutrient deficiency in crop plants
Teaching Methodology

- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Recommended Books:

Title of the Course: **Basic Physiological Processes in Plants**

Credit Hours: 3 (2-1)

Specific Objectives of Course:

- To create awareness of basic physiological processes in plants

Learning Outcomes:

At the end of the course, students will be able to:
1. Know physiological process of germination
2. Know the assimilation partitioning and translocation of metabolites in plants
3. Understand the process of stomatal movement and its role in maintenance of plant water status
4. Know the types and role of different growth regulators in plants
5. Define photo- and thermo-periodic responses in plants

Theory:
- Seed germination and its requirements
- Modes of germination
- Factors affecting germination
- Absorption of water (ascent of sap)
- Transpiration and guttation
- Translocation of solutes
- Regulation of stomatal movement
- Source-sink relationships
- Partitioning and remobilization of assimilates
- Plant growth regulation
- Photoperiodism and thermoperiodism

Practical:
- Demonstration of modes of germination
- Demonstration of soilless culture (hydroponics, aeroponics etc.)
- Measurement of transpiration rate
- Demonstration of effects of various growth regulators on crop plant

Teaching Methodology
- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
Recommended Books:

Title of the Course: **Fundamentals of Nitrogen Fixation**
Credit Hours: 3 (2-1)

Specific Objectives of Course:
- To know the physiological mechanisms of nitrogen fixation in plants

Learning Outcomes:

At the end of this course, the students will be able to:
1. Know the importance and sources of nitrogen as a plant nutrient
2. Understand the process of nitrogen fixation
3. Know the biological nitrogen fixing systems and assimilation of ammonia
4. Identify the plant growth promoting bacteria and their use in agriculture

Theory:
- Nitrogen and plant growth
- Nitrogen cycle
- Classification of nitrogen fixing microorganisms
- Symbiotic and asymbiotic nitrogen fixation
- Mechanism of BNF
- Nodulation; process and mechanism
- Nitrogenase, ammonia assimilation
- Factors affecting nodulation and BNF
- Introduction to bio-fertilizers and their application in agriculture
- Plant growth promoting rhizobacteria
Practical:
- Demonstration of inoculation methods
- Study of nodule formation under different environmental conditions
- Identification of effective and non-effective nodules
- Methods used to measure biologically fixed nitrogen

Teaching Methodology
- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Recommended Books:
Title of the Course: Plant Cell Structure and Function
Credit Hours: 3 (2-1)

Specific Objectives of Course:
- To develop basic understanding of the cell organelles and their functions

Learning Outcomes:

At the end of the course, students will be able to:

1. Know types of living cells and their structural entities
2. Know different types of water/nutrient/sap movement in plants
3. Understand the metabolic functions in plant cell
4. Know the mechanism of energy flow in respiration and photosynthesis
5. Calculate energetics of different substrates in plant metabolism

Theory:
- Types of living cells: prokaryotic, eukaryotic and mesokaryotic cells
- Structural constituents of cell and their functions
- Apoplast, cell wall and vacuole
- Symplast, cytoplasm, plasmodesmata, plasma membrane, cytosomes, endoplasmic reticulum, golgi complex, micro-bodies, ribosomes, mitochondria, plastids, nucleus, nuclear membrane, microtubules, microfilaments and tonoplast
- Cell metabolism

Practical:
- Slide preparation of various types of cells
- Identification of cell organelles

Teaching Methodology
- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Recommended Books:

Title of the Course: Physiology of Cereals
Credit Hours: 3 (2-1)

Specific Objectives of Course:
- To understand the physiology of growth and productivity of cereals

Learning outcomes:
After studying this course, students will be able to;
1. Define the physiological growth of plants
2. Understand the physiological basis of ontogenic development in cereals
3. Comprehend the phenomenon of grain development
4. Infer the synthesis and translocation of photosynthates
5. Evaluate the interactive relationship of photosynthetic efficiency and attributes of biomass production

Theory:
- Physiology of leaf growth and tillering
- Site filling dynamics
- Leaf canopy, its architecture and its implications for light interception
- Photosynthetic efficiency and utilization
- Source-sink relationships; partitioning coefficient
- Grain growth and development
- Ripening and maturity
• Indices of economic yield

Practical:
• Identification of growth stages in cereals
• Leaf area measurement and calculation of leaf area index
• Measurements of plant biomass and photosynthetic efficiency

Teaching Methodology

• Lecturing
• Written Assignments
• Guest Speaker
• Field Visits
• Report Writing

Assessment

Mid Term (40%)
• Written (Long Questions, Short Questions, MCQs) 50%
• Presentation 20%
• Assignments 20%
• Report Writing 10%

Final Term (60%)
• Written (Long Questions, Short Questions, MCQs) 50%
• Presentation 20%
• Assignments 20%
• Report Writing 10%

Recommended Books:

Title of the Course: Seed Physiology
Credit Hours: 3 (2-1)

Specific Objectives of Course:
• To understand the physiological processes of seed development and its germination

Learning Outcomes:
At the end of the course, students will be able to:
1. Define basic concepts in seed germination and development.
2. Understand the physiology of seed formation
3. Demonstrate the methods used for testing seed health and breaking seed dormancy
4. Critically evaluate the factors influencing seed germination and emergence
5. Suggest appropriate strategies for enhancing seed germination

Theory:
- Definition of seed, seed structure
- Physiology of seed formation and development
- Composition of seed
- Physiology and biochemistry of seed germination
- Factors affecting seed germination and emergence
- Seed viability and seed vigor
- Dormancy and methods of breaking seed dormancy
- Seed longevity and storage

Practical:
- Seed testing for moisture, viability and vigor
- Methods of breaking seed dormancy
- Germination under different moisture, temperature and salt regimes
- Seed vigor enhancement techniques

Teaching Methodology
- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Recommended Books:

Title of the Course: Plant Growth Substances
Credit Hours: 3 (2-1)

Specific Objectives of Course:
- To understand the mechanism of biosynthesis, functions, transport and degradation of plant growth substances

Learning Outcomes:

At the end of this course, the students will be able to:
1. Know the nature and role of growth substances in plants
2. Understand the hormonal pathways (biosynthesis, degradation and translocation) in plants
3. Know the ways by which plant growth substances mediate/regulate organogenesis in plants
4. Know the use of plant growth substances in agriculture

Theory:
- Growth substances and their occurrence
- Nature and classification of growth substances
- Biosynthesis and their translocation
- Mode of action and degradation
- Regulation of plant growth
- Application of growth substances in agriculture

Practical:
- Preparation of stock and working solutions of various plant growth substances.
- Effects of different growth substances on seed germination and seedling growth
• Bioassay studies of selected growth substances

Teaching Methodology

• Lecturing
• Written Assignments
• Guest Speaker
• Field Visits
• Report Writing

Assessment

Mid Term (40%)
• Written (Long Questions, Short Questions, MCQs) 50%
• Presentation 20%
• Assignments 20%
• Report Writing 10%

Final Term (60%)
• Written (Long Questions, Short Questions, MCQs) 50%
• Presentation 20%
• Assignments 20%
• Report Writing 10%

Recommended Books:

Title of the Course: Physiology of Crop Nutrition
Credit Hours: 3 (2-1)

Specific Objectives of Course:
• To understand the physiological basis of plant nutrition and importance, deficiency symptoms and uptake mechanisms of different plant nutrients

Learning Outcomes:
At the end of the course, students will be able to:
1. Define key concepts in plant nutritional physiology
2. Diagnose nutritional disorders in plants
3. Devise appropriate nutrient management strategies for improving crop productivity

Theory:
- Crop nutrition and essentiality criteria of nutrients
- Classification of plant nutrients
- Essential elements; physiological functions and deficiency symptoms of different nutrients
- Mechanisms of uptake and translocation
- Mycorrhizae and their role in nutrient absorption
- Metabolism of nutrients
- Physiological disorders due to nutrient deficiency and toxicities
- Nutrient requirements of different crops and their management for economical crop yield

Practical:
- Techniques of growing plants for nutritional studies (aeroponics, hydroponics, sand and gravel etc.)
 Preparation of nutrient media (Hoagland, Yoshida and Johnson etc.) for water culture
- Identification of deficiency and toxicity symptoms of different nutrients

Teaching Methodology
- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment
Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%
Recommended Books:

Title of the Course: Physiology of Legumes and Cash Crops
Credit Hours: 3 (2-1)

Specific Objectives of Course:
- To understand the physiological processes of yield in non-cereal crops

Learning Outcomes:

At the end of the course, students will be able to:
1. Understand the importance of canopy architecture in plant growth and development.
2. Define the key features of growth and development of legumes and cash crops.
3. Evaluate the basis for yield and quality variation in legumes and cash crops.
4. Demonstrate competence in the measurement of plant growth indices and have knowledge of developmental growth stages in non-cereals.

Theory:
- Patterns of canopy development and its architecture in broad leaved crops.
- Dynamics of light interception in relation to canopy development
- Source-sink relationships and dry matter partitioning in sugar, fiber, oil seed, legume, tuber crops and others
- Indices of economic yield

Practical:
- Leaf area measurements and calculations of leaf area indices
- Measurements of plant biomass and photosynthetic efficiency
- Identification of developmental growth stages in non-cereal crops

Teaching Methodology
- Lecturing
- Written Assignments
Guest Speaker
Field Visits
Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Recommended Books:

Title of the Course: Introductory Molecular Biology
Credit Hours: 3 (2-1)

Specific Objectives of Course:
- To impart basic knowledge of molecular biology

Learning Outcomes:
At the end of this course, the students will be able to:

1. Know the molecular basis of heredity in living systems
2. Understand the molecular mechanism of gene expression
3. Understand the interrelationship of biomolecules

Theory:

- Types of biomolecules (Nucleic acids, Proteins and other macromolecules)
- Nature of hereditary materials
- Nucleic acid metabolism
- Relationship between DNA, chromosome and genome
- DNA and RNA structure, replication, transcription, translation and DNA recombination
- Presentations on different mechanisms happening at molecular and crop level
- Introduction to bio-ethics and bio-informatics

Practical:

- Demonstration of DNA extraction
- DNA estimation using Gel Electrophoresis/Spectrophotometer
- Visit to any bio-technological facility

Teaching Methodology

- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Recommended Books:
Title of the Course: Stress Physiology
Credit Hours: 3 (2-1)

Specific Objectives of Course:
- To understand the types, mechanism of damage and adaptation to environmental stresses in plants

Learning Outcomes:

At the end of this course, the students will be able to:
1. Know the effect of various stresses on plant growth and productivity
2. Identify physiological and biochemical markers for stress tolerance in crops
3. Quantify the relative losses caused by various abiotic stresses

Theory:
- Introduction to biotic and abiotic stresses
- Physiological and biochemical bases of damage caused by moisture, temperature, radiation, pollutants, chemical, mineral and salt stresses
- Responses of plant to various stresses

Practical:
- Demonstration of moisture, salinity and temperature stress on plants

Teaching Methodology
- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
• Presentation 20%
• Assignments 20%
• Report Writing 10%

Recommended Books:

Title of the Course: Plant Water Relations
Credit Hours: 3 (2-1)

Specific Objectives of Course:

• To understand the importance of water in plant life.

Learning Outcomes:

After studying this course, students will be able to;
1. Define and describe the physico-chemical characteristics of water
2. Understand water uptake and ascent of sap
3. Comprehend interactive relationship of water potential to water uptake
4. Evaluate various matrix of water potential

Theory:

• Water; importance, physical and chemical properties
• Types of soil moisture
• Water potential and its components; free energy and chemical potential
• Water absorption
• Tensile strength, root pressure and ascent of sap
• Cohesion mechanism and capillary rise in xylem
• Soil, plant, atmosphere continuum
• Transpiration and factors affecting transpiration
• Plasmolysis and permanent wilting point

Practical:

• Techniques and experimental approaches for measurement of plant water status
Teaching Methodology

- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Recommended Books:

Title of the Course: Plant Growth and Development
Credit Hours: 3 (2-1)

Specific Objectives of Course:

- To understand the processes of growth and development in plants

Learning Outcomes:

At the end of the course, students will be able to:
1. Differentiate between growth and development in plants
2. Identify growth regions in plants and their physiological relevance to development
3. Define phenological development in plants and the factors influencing it
4. Understand hormonal regulation of growth and development in plants

Theory:

- Concept of growth and development, growth conditions and mechanisms
- Patterns of growth and phases of growth curve
- Life cycle of plant growth
- Factors affecting plant growth and development
- Photoperiodism, thermoperiodism, vernalization and tropisms
- Role of phytohormones in crop growth and development,
- Fruit set, seed development
- Techniques for production of seedless fruits,
- Physiological maturity, abscission and senescence

Practical:

- Identification and measurement of growth regions
- Demonstration of various factors on growth
- Growth analysis of crop plants

Teaching Methodology

- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Recommended Books:

Title of the Course: Carbon Metabolism in Plants
Credit Hours: 3 (2-1)

Specific Objectives of Course:

- To create awareness about carbon metabolism in plants

Learning Outcomes:

At the end of the course, students will be able to:

1. Understand the process of photosynthesis and factors affecting it
2. Differentiate between C₃, C₄ and CAM plants
3. Comprehend the synthesis of ATP during photosynthesis
4. Know the process of nitrogen assimilation in plants

Theory:

- Photosynthesis: Photophosphorylation, mechanism and biochemistry of CO₂ fixation in C₃, C₄ and CAM plants
- Photorespiration
- Factors affecting photosynthesis
- Respiration; types and bioenergetics
- Carbohydrate metabolism
- Transformation of inorganic nitrogen into amino acids and proteins

Practical:

- Demonstration of rate of photosynthesis and respiration
- Comparative morphological characteristics of C₃, C₄ and CAM plants

Teaching Methodology

- Lecturing
- Written Assignments
- Guest Speaker
• Field Visits
• Report Writing

Assessment

Mid Term (40%)
• Written (Long Questions, Short Questions, MCQs) 50%
• Presentation 20%
• Assignments 20%
• Report Writing 10%

Final Term (60%)
• Written (Long Questions, Short Questions, MCQs) 50%
• Presentation 20%
• Assignments 20%
• Report Writing 10%

Recommended Books:

Title of the Course: Physiological Aspects of Tissue Culture
Credit Hours: 3 (2-1)

Specific Objectives of Course:
• To develop an understanding of plant tissue culture and its importance in crop physiology

Learning Outcomes:

After studying this course, students will be able to:
 1. Know the importance and recipe of different tissue culture media
 2. Know how to maintain aseptic conditions for tissue culture
 3. Know different developmental stages for regeneration of a plant through tissue culture
 4. Gain a basic knowledge about the factors affecting in vitro cultures
 5. Know the use of tissue culture techniques in agriculture

Theory:
• Historical background
- Composition of different culture media
- Sterilization techniques (glassware and media)
- Culture conditions and environment
- Physiology of donor and explant
- Physiology of callus formation and its types
- Morphogenesis and factors affecting morphogenesis
- Organogenesis (root and shoot formation)
- Protoplasts, isolation and culture
- Fusion haploid plants and their use in agriculture
- Embryogenesis and factors affecting embryogenesis
- Micro-propagation and its applications
- *In vitro* stress induction with special reference to salt, drought and temperature
- Problems and limitations of tissue culture techniques

Practical:
- Glassware selection, cleaning and sterilization
- Study and preparation of various growth media
- *In vitro* seed germination techniques
- Explant: selection, preparation and propagation techniques
- Methods of callus induction and regeneration

Teaching Methodology

- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Recommended Books:

Title of the Course: **Crop Ecology**
Credit Hours: 3 (2-1)

Specific Objectives of Course:

- To understand the characteristics and services of agro-ecosystems and their dynamics

Learning Outcomes:

At the end of this course, the students will be able to:

1. Know basic terminology prevalent in ecological studies
2. Understand the influence of different biotic and abiotic factors on the ecosystem composition and process
3. Define various processes and services of an ecosystem
4. Understand the influence of ecological optima in agro-ecosystems
5. Know the agro-ecological zones of Pakistan

Theory:

- Ecosystem; concept, species and population dynamics
- Crop ecosystem; aerial and soil environment
- Environmental factors and crop productivity; responses of crop plants to atmospheric, edaphic, biotic, pyric and anthropogenic factors
- Crop yield variability in relation to ecological optima; interaction between organism
- Interference: competition, predation, parasitism, symbiosis and allelopathy
- Ecological strategies for crop productivity
- Natural resource management for ecosystem sustainability
- Agro-ecological zones of Pakistan

Practical:

- Visits to study the soil types, vegetation and water resources of major agro-ecological zones of Pakistan.
Teaching Methodology

- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
- Assignments 20%
- Report Writing 10%

Recommended Books:

Title of the Course: Environmental Physiology
Credit Hours: 3 (2-1)

Specific Objectives of Course:

- To understand the physiological responses of crop plants to changing environment
Learning Outcomes:

At the end of the course, students will be able to:
1. Understand the physiological basis of plant responses to various environmental variables
2. Invoke understanding how environmental factors influence crop productivity
3. Understand the adaptive mechanisms in plants for amelioration of environmental extremities
4. Evaluate the impact of changing environment on morphological development and growth of plants
5. Suggest the strategies for better crop productivity under different environmental conditions

Theory:

- Plant environment and its components
- Effect of solar radiation, temperature, precipitation, relative humidity, CO₂ and pollutants on physiology of crop plants
- Environmental control of growth and development: biological, genetic, atmospheric, edaphic and cultural factors
- Physiological strategies for improving crop productivity
- Crop productivity in relation to greenhouse effects, global warming and climate changes

Practical:

- Demonstration of effects of light, temperature, water and injurious salts on crop plants
- To visit sub urban agricultural land for observation of pollutant effects on soil and plants

Teaching Methodology

- Lecturing
- Written Assignments
- Guest Speaker
- Field Visits
- Report Writing

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs) 50%
- Presentation 20%
• Assignments 20%
• Report Writing 10%

Final Term (60%)
• Written (Long Questions, Short Questions, MCQs) 50%
• Presentation 20%
• Assignments 20%
• Report Writing 10%

Recommended Books:
DETAILS OF COMPULSORY COURSES
COMPULSORY COURSES IN ENGLISH FOR
Undergraduate Level

English I (Functional English) Credit Hrs. 3

Objectives: Enhance language skills and develop critical thinking.

Course Contents
- Basics of Grammar
- Parts of speech and use of articles
- Sentence structure, active and passive voice
- Practice in unified sentence
- Analysis of phrase, clause and sentence structure
- Transitive and intransitive verbs
- Punctuation and spelling

Comprehension
Answers to questions on a given text

Discussion
General topics and every-day conversation (topics for discussion to be at the discretion of the teacher keeping in view the level of students)

Listening
To be improved by showing documentaries/films carefully selected by subject teachers

Translation skills
Urdu to English

Paragraph writing
Topics to be chosen at the discretion of the teacher

Presentation skills
Introduction

Note: Extensive reading is required for vocabulary building

Teaching Methodology
- Lecturing
- Written Assignments

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
Final Term (60%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Recommended Books:
1. **Functional English**
 a) Grammar

 b) Writing

 c) Reading/Comprehension

 d) Speaking

English II (Communication Skills) Credit Hrs. 3

Objectives: Enable the students to meet their real life communication needs.

Course Contents

- **Paragraph writing**
 Practice in writing a good, unified and coherent paragraph

- **Essay writing**
 Introduction

- **CV and job application**
 Translation skills
 Urdu to English

- **Study skills**
 Skimming and scanning, intensive and extensive, and speed reading, summary and précis writing and comprehension

- **Academic skills**
 Letter/memo writing, minutes of meetings, use of library and internet

- **Presentation skills**
 Personality development (emphasis on content, style and pronunciation)
Note: documentaries to be shown for discussion and review

Teaching Methodology

- Lecturing
- Written Assignments

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Recommended Books:

Communication Skills

a) Grammar

b) Writing

c) Reading
2. Reading and Study Skills by John Langan
3. Study Skills by Riachard Yorky.

English III (Technical Writing and Presentation Skills) Credit Hrs.3

Objectives: Enhance language skills and develop critical thinking

Course Contents:

Presentation skills
Essay writing
Descriptive, narrative, discursive, argumentative

Academic writing
How to write a proposal for research paper/term paper

How to write a research paper/term paper (emphasis on style, content, language, form, clarity, consistency)

Technical Report writing

Progress report writing

Note: Extensive reading is required for vocabulary building

Teaching Methodology

- Lecturing
- Written Assignments

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Recommended Books:
Technical Writing and Presentation Skills

a) Essay Writing and Academic Writing

b) Presentation Skills

c) Reading
 The Mercury Reader. A Custom Publication. Compiled by northern Illinois University. General Editors: Janice Neulib; Kathleen Shine Cain; Stephen Ruffus and Maurice Scharton. (A reader which will give students exposure to the best of twentieth century literature, without taxing the taste of engineering students).
ISLAMIC STUDIES
(Compulsory)

Objectives:
This course is aimed at:
1. To provide basic information about Islamic Studies
2. To enhance understanding of the students regarding Islamic Civilization
3. To improve students' skills to perform prayers and other worships
4. To enhance the skill of the students for understanding of issues related to faith and religious life.

Detail of Courses:

Introduction to Quranic Studies
1) Basic Concepts of Quran
2) History of Quran
3) Uloom-ul-Quran

Study of Selected Text of Holly Quran
1) Verses of Surah Al-Baqra Related to Faith (Verse No-284-286)
2) Verses of Surah Al-Hujrat Related to Adab Al-Nabi (Verse No-1-18)
3) Verses of Surah Al-Mumanoon Related to Characteristics of faithful (Verse No-1-11)
4) Verses of Surah Al-Furqan Related to Social Ethics (Verse No.63-77)
5) Verses of Surah Al-Inam Related to Ihkam (Verse No-152-154)

Study of Selected Text of Holly Quran
1) Verses of Surah Al-Ihzab Related to Adab al-Nabi (Verse No.6,21,40,56,57,58.)
2) Verses of Surah Al-Hashar (18,19,20) Related to thinking, Day of Judgment
3) Verses of Surah Al-Saf Related to Tafakar, Tadabar (Verse No-1,14)

Seerat of Holy Prophet (S.A.W) I
1) Life of Muhammad Bin Abdullah (before Prophet Hood)
2) Life of Holy Prophet (S.A.W) in Makkah
3) Important Lessons Derived from the life of Holy Prophet in Makkah

Seerat of Holy Prophet (S.A.W) II
1) Life of Holy Prophet (S.A.W) in Madina
2) Important Events of Life of Holy Prophet in Madina
3) Important Lessons Derived from the life of Holy Prophet in Madina

Introduction to Sunnah
1) Basic Concepts of Hadith
2) History of Hadith
3) Kinds of Hadith
4) Uloom –ul-Hadith
Selected Study from Text of Hadith

Introduction to Islamic Law & Jurisprudence
1) Basic Concepts of Islamic Law & Jurisprudence
2) History & Importance of Islamic Law & Jurisprudence
3) Sources of Islamic Law & Jurisprudence
4) Nature of Differences in Islamic Law
5) Islam and Sectarianism

Islamic Culture & Civilization
1) Basic Concepts of Islamic Culture & Civilization
2) Historical Development of Islamic Culture & Civilization
3) Characteristics of Islamic Culture & Civilization
4) Islamic Culture & Civilization and Contemporary Issues

Islam & Science
1) Basic Concepts of Islam & Science
2) Contributions of Muslims in the Development of Science
3) Quran & Science

Islamic Economic System
1) Basic Concepts of Islamic Economic System
2) Means of Distribution of wealth in Islamic Economics
3) Islamic Concept of Riba
4) Islamic Ways of Trade & Commerce

Political System of Islam
1) Basic Concepts of Islamic Political System
2) Islamic Concept of Sovereignty
3) Basic Institutions of Govt. in Islam

Islamic History
1) Period of Khlaft-E-Rashida
2) Period of Ummayyads
3) Period of Abbasids

Social System of Islam
1) Basic Concepts of Social System of Islam
2) Elements of Family
3) Ethical Values of Islam

Teaching Methodology
- Lecturing
- Written Assignments

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Reference Books:
1) Hameed ullah Muhammad, “Emergence of Islam”, IRI, Islamabad
2) Hameed ullah Muhammad, “Muslim Conduct of State”
3) Hameed ullah Muhammad, ‘Introduction to Islam
4) Mulana Muhammad Yousaf Islahi,”
6) Ahmad Hasan, “Principles of Islamic Jurisprudence” Islamic Research Institute, International Islamic University, Islamabad (1993)
9) Dr. Muhammad Zia-ul-Haq, “Introduction to Al Sharia Al Islamia” Allama Iqbal Open University, Islamabad (2001)
Pakistan Studies (Compulsory)

Introduction/Objectives

- Develop vision of historical perspective, government, politics, contemporary Pakistan, ideological background of Pakistan.
- Study the process of governance, national development, issues arising in the modern age and posing challenges to Pakistan.

Course Outline

1. **Historical Perspective**
 b. Factors leading to Muslim separatism
 c. People and Land
 i. Indus Civilization
 ii. Muslim advent
 iii. Location and geo-physical features.

2. **Government and Politics in Pakistan**
 Political and constitutional phases:
 a. 1947-58
 b. 1958-71
 c. 1971-77
 d. 1977-88
 e. 1988-99
 f. 1999 onward

3. **Contemporary Pakistan**
 a. Economic institutions and issues
 b. Society and social structure
 c. Ethnicity
 d. Foreign policy of Pakistan and challenges
 e. Futuristic outlook of Pakistan

Teaching Methodology

- Lecturing
- Written Assignments

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Final Term (60%)
• Written (Long Questions, Short Questions, MCQs)
• Presentation
• Assignments

Books Recommended
ANNEXURE - D

COMPULSORY MATHEMATICS
COURSES FOR BSc (Hons) AGRICULTURE

1. MATHEMATICS I (ALGEBRA)

Prerequisite(s): Mathematics at secondary level

Credit Hours: 3 + 0

Specific Objectives of the Course:
To prepare the students, not majoring in mathematics, with the essential tools of algebra to apply the concepts and the techniques in their respective disciplines.

Course Outline:

Preliminaries: Real-number system, complex numbers, introduction to sets, set operations, functions, types of functions.

Matrices: Introduction to matrices, types, matrix inverse, determinants, system of linear equations, Cramer’s rule.

Quadratic Equations: Solution of quadratic equations, qualitative analysis of roots of a quadratic equations, equations reducible to quadratic equations, cube roots of unity, relation between roots and coefficients of quadratic equations.

Sequences and Series: Arithmetic progression, geometric progression, harmonic progression.

Binomial Theorem: Introduction to mathematical induction, binomial theorem with rational and irrational indices.

Trigonometry: Fundamentals of trigonometry, trigonometric identities.

Teaching Methodology

- Lecturing
- Written Assignments

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs)
Recommended Books:

2. **MATHEMATICS II (CALCULUS)**

Prerequisite(s): Mathematics I (Algebra)

Credit Hours: 3 + 0

Specific Objectives of the Course:
To prepare the students, not majoring in mathematics, with the essential tools of calculus to apply the concepts and the techniques in their respective disciplines.

Course Outline:
Preliminaries: Real-number line, functions and their graphs, solution of equations involving absolute values, inequalities.

Limits and Continuity: Limit of a function, left-hand and right-hand limits, continuity, continuous functions.

Derivatives and their Applications: Differentiable functions, differentiation of polynomial, rational and transcendental functions, derivatives.

Integration and Definite Integrals: Techniques of evaluating indefinite integrals, integration by substitution, integration by parts, change of variables in indefinite integrals.

Teaching Methodology
- Lecturing
- Written Assignments

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Recommended Books:
3. **MATHEMATICS III (GEOMETRY)**

Prerequisite (s): Mathematics II (Calculus)

Credit Hours: 3 + 0

Specific Objectives of the Course:
To prepare the students, not majoring in mathematics, with the essential tools of geometry to apply the concepts and the techniques in their respective disciplines.

Course Outline:
Geometry in Two Dimensions: Cartesian-coördinate mesh, slope of a line, equation of a line, parallel and perpendicular lines, various forms of equation of a line, intersection of two lines, angle between two lines, distance between two points, distance between a point and a line.

Circle: Equation of a circle, circles determined by various conditions, intersection of lines and circles, locus of a point in various conditions.

Conic Sections: Parabola, ellipse, hyperbola, the general-second-degree equation.

Teaching Methodology
- Lecturing
- Written Assignments

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Recommended Books:

Note:
1. Two courses will be selected from the following three courses of Mathematics.

2. Universities may make necessary changes in the courses according to the requirement as decided by the Board of Studies.
Statistics-I

Definition and importance of Statistics in Agriculture, Data Different types of data and variables

Classification and Tabulation of data, Frequency distribution, stem-and-Leaf diagram, Graphical representation of data Histogram, frequency polygon, frequency curve.

Measure of Central tendency, Definition and calculation of Arithmetic mean, Geometric mean, Harmonic mean, Median quantiles and Mode in grouped and ungrouped data.

Measure of Dispersion, Definition and Calculation of Range, quartile deviation, Mean deviation, Standard deviation and variance, coefficient of variation.

Practical

a. Frequency Distribution
b. Stem-and-Leaf diagram
c. Various types of Graphs
d. Mean, Geometric mean Harmonic Mean,
e. Median, Quartiles Deviation, mean Deviation.
f. Standard Deviation, Variance, Coefficient of variation,
g. Skewness and kenessis

Teaching Methodology

- Lecturing
- Written Assignments

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Book Recommended

1. Introduction to Statistical Theory Part- I by Sher Muhammad and Dr. Shahid Kamal (Latest Edition)
2. Statistical Methods and Data Analysis by Dr. Faquir Muhammad
4. Basic Statistics an Inferential Approach 2nd Ed. (1986) Fran II. Dietrich-II and Thomas J. Keans

Statistics-II
Credit 3 (2-1)
Sampling Probability and non-Probability Sampling, Simple random sampling stratified random sampling Systematic sampling error, Sampling distribution of mean and difference between two means. Interference Theory: Estimation and testing of hypothesis, Type—I and type-II error, Testing of hypothesis about mean and difference between two means using Z-test and t-test, Paired t-test, Test of association of attributes using X2 (chi-square) Testing hypothesis about variance.

Practicals
a. Sampling random sampling
b. Stratified random sampling.
c. Sampling distribution of mean
d. Testing of hypotheses regarding population mean
e. Testing of hypotheses about the difference between population means
f. Chi-square test
g. Testing of Correlation Coefficient
h. Fitting of simple linear regression
i. One-way ANOVA
j. Two-way ANOVA

Teaching Methodology
- Lecturing
- Written Assignments

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Book Recommended
2. Muhammad F. Statistical Methods and Data Analysis

Note: Universities may make necessary changes in the courses according to the requirement as decided by the Board of Studies.
Course Name: Introduction to Information and Communication Technologies

Course Structure: Lectures: 2 Labs: 1 Credit Hours: 3
Pre-requisite: None Semester: 1

Course Description:
This is an introductory course on Information and Communication Technologies. Topics include ICT terminologies, hardware and software components, the internet and world wide web, and ICT based applications. After completing this course, a student will be able to:

- Understand different terms associated with ICT
- Identify various components of a computer system
- Identify the various categories of software and their usage
- Define the basic terms associated with communications and networking
- Understand different terms associated with the Internet and World Wide Web.
- Use various web tools including Web Browsers, E-mail clients and search utilities.
- Use text processing, spreadsheets and presentation tools
- Understand the enabling/pervasive features of ICT

Course Contents:
- Basic Definitions & Concepts
- Hardware: Computer Systems & Components
- Storage Devices, Number Systems
- Software: Operating Systems, Programming and Application Software
- Introduction to Programming, Databases and Information Systems
- Networks
- Data Communication
- The Internet, Browsers and Search Engines
- The Internet: Email, Collaborative Computing and Social Networking
- The Internet: E-Commerce
- IT Security and other issues
- Project Week
- Review Week

Teaching Methodology

- Lecturing
- Written Assignments

Assessment

Mid Term (40%)

- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Text Books/Reference Books:
Functional Biology-I

Credit Hours 3+0

Biological Methods

- Principles of Cellular Life
- Chemical Basis
- Structure and Function
- Principles of Metabolism
- Energy Acquisition

Principles of Inheritance

- Mitosis and Meiosis
- Chromosomes
- Observable Inheritance Patterns
- DNA Structure and Function
- RNA and Proteins
- Genes
- Genetic Engineering and Biotechnology

Biodiversity

- Fundamental Concept of Biodiversity
- One or two examples of each of the following from commonly found organism
- Prions
- Viruses
- Bacteria
- Protistans
- Algae
- Fungi
- Plants
- Crops
- Animals
- Invertebrates
- Vertebrates

Teaching Methodology

- Lecturing
- Written Assignments

Assessment

Mid Term (40%)

- Written (Long Questions, Short Questions, MCQs)
- Presentation
• Assignments

Final Term (60%)
• Written (Long Questions, Short Questions, MCQs)
• Presentation
• Assignments

Reading
Functional Biology-II

Credit Hours 3+0

Myths and Realities of Evolution
Microevolution
Speciation
Macroevolution

Level of Organization
Plants
Tissues
Nutrition and Transport
Reproduction
Growth and Development

Animals
Tissue, Organ System and Homeostasis
Information Flow and Neuron
Nervous System
Circulation and Immunity
Nutrition and Respiration
Reproduction and Development

Ecology and Behavior
Ecosystems
Biosphere
Social Interactions
Community Interactions
Human Impact on Biosphere
Environment Conservation

Teaching Methodology

- Lecturing
- Written Assignments

Assessment

Mid Term (40%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments

Final Term (60%)
- Written (Long Questions, Short Questions, MCQs)
- Presentation
Assignments

Reading

Note: Universities may make necessary changes in the courses according to the requirement as decided by the Board of Studies.
General Recommendations

The committee recommended the following:

1. Department of Crop Physiology be established at PMAS Arid Agriculture University, Rawalpindi, Khyber Pakhtunkhwa Agriculture University, Peshawar, Gomal University, D.I. Khan, Balochistan University of Information Technology Engineering and Management Sciences, (BUITEMS) Quetta, Bahauddin Zakariya University, (BZU) Multan, The Islamia University of Bahawalpur, Lasbela, University of Agriculture, Water and Marine Sciences Uthal and The University of Azad Jamu and Kashmir, Rawlakot Campus like Sindh Agriculture University, Tandojam and University of Agriculture, Faisalabad where this department has already been established.

2. Crop physiology course may be added in agriculture domain and meetings of NCRC in Crop Physiology may be arranged in the series of agriculture domain subjects.

3. Teacher trainings be arranged to acquire new techniques in crop physiology.

4. Adequate number of posts of Crop Physiologists be created in agricultural departments/organizations of the country to strengthen the agricultural system by giving due recognition to this important field.

5. The committee further recommended that Crop Physiology be given an equivalent status as other major disciplines of agricultural specialization (e.g. Agronomy, Soil Science etc.) by the Federal and Provincial Governments to include this field of specialization in subject of preference.

6. National Book Foundation of Pakistan may be requested to print relevant text books in Crop Physiology in consultation with the experts.

8. The Society of Crop Physiologists needs to be established and later on a Journal of Crop Physiology may be published.

9. Internship:
 a) Last six-months/final semester of the academic program should preferably be reserved for internship. However, where internship opportunities are not available, optional courses should be offered as an alternative.
 b) HEC should provide remuneration @ Rs.15000/month/internee for the internship.